Bubbling location for F-harmonic maps and Inhomogeneous Landau-Lifshitz equations *

Yuxiang Li, Youde Wang

Abstract

Let f be a positive smooth function on a close Riemann surface (M,g). The f-energy of a map u from M to a Riemannian manifold (N,h) is defined as

$$E_f(u) = \int_M f |\nabla u|^2 dV_g.$$

In this paper, we will study the blow-up properties of Palais-Smale sequences for E_f. We will show that, if a Palais-Smale sequence is not compact, then it must blows up at some critical points of f. As a sequence, if an inhomogeneous Landau-Lifshitz system, i.e. a solution of

$$u_t = u \times \tau_f(u) + \tau_f(u), \quad u : M \to S^2$$

blows up at time ∞, then the blow-up points must be the critical points of f.

Mathematics Subject Classification: 35Q60;58E20

Keywords: f-harmonic map, inhomogeneous Landau-Lifshitz equation, f-harmonic flow, blow-up point

1 Introduction

Let (M,g) and (N,h) be two Riemannian manifolds. A C^1-smooth map u from M into N is called a harmonic map if and only if u is a critical point of the energy functional $E(v)$, which is defined in local coordinates by

$$E(v) \equiv \int_M \text{Trace}_g(v^*h)dV_g,$$

where

$$\text{Trace}_g(v^*h) = g^{ij} \frac{\partial u^{\alpha}}{\partial x^i} \frac{\partial u^{\beta}}{\partial x^j} h_{\alpha\beta}(u).$$

It is well-known that the energy functional is conformally invariant when $\dim(M) = 2$.

In this paper we would like to study a class of C^1-smooth maps from a Riemann surface into a compact Riemannian manifold which are defined as the critical points of the inhomogeneous energy functional written as

$$E_f(v) \equiv \int_M \text{Trace}_g(v^*h)f dV_g,$$

*The second author (Y. Wang) is supported in part by the National Key Basic Research Fund G1999075107 and the National Science Fund for Distinguished Young Scholars 10025104 of the People’s Republic of China.
where \(f \) is a smooth real function. In [L] and [E-L] (see page 48, (10.20)), such maps are called \(f \)-harmonic from \(M \) into \(N \). Obviously, they are just harmonic maps if \(f \equiv 1 \). Moreover, when \(m = \text{dim}(M) \neq 2 \), an \(f \)-harmonic map is nothing but a harmonic map from \((M, f^{-\frac{1}{2}}g)\) to \((N, h)\). In local coordinates, the \(f \)-harmonic map satisfies the following Euler-Lagrange equation

\[
f \tau(u) + \nabla f \cdot \nabla u = 0.
\]

Here \(\tau(u) \) is the tension field of \(u \) which can be written as

\[
\tau^\alpha(u) = \Delta_g u^\alpha + g^{ij} \Gamma^\alpha_{\beta\gamma}(u) \frac{\partial u^\beta}{\partial x^i} \frac{\partial u^\gamma}{\partial x^j}.
\]

To see the physical motivation for the \(f \)-harmonic maps, we consider a smooth domain \(\Omega \) in the Euclidean space \(\mathbb{R}^m \). An inhomogeneous Heisenberg spin system is given by

\[
\partial_t u = f(u \wedge \Delta u) + \nabla f \cdot (u \wedge \nabla u),
\]

where \(f \) is a real-valued function defined on \(\Omega \), \(u(x, t) \in S^2 \), \(\wedge \) denotes the cross products in \(\mathbb{R}^3 \) and \(\Delta \) is the Laplace operator on \(\mathbb{R}^m \). Physically, the function \(f \) is called the coupling function, and is the continuum limit of the coupling constants between the neighboring spins. It is easy to see that if \(u \) is a smooth stationary solution of the above equation, then \(u \) is just an \(f \)-harmonic map from \(\Omega \) into \(S^2 \). Indeed, in this case the tension field of \(u \) can be written as \(\Delta u + |\nabla u|^2 u \), therefore, the right hand side of the above equation can be expressed by \(u \wedge (f \tau(u) + \nabla f \cdot \nabla u) \), and \(u \) satisfies the following equation

\[
f \tau(u) + \nabla f \cdot \nabla u = 0.
\]

The above inhomogeneous Heisenberg spin system is also called inhomogeneous Landau-Lifshitz system. Landau and Lifshitz also suggested considering the following dispersive system

\[
\partial_t u = u \wedge (f \tau(u) + \nabla f \cdot \nabla u) - u \wedge (u \wedge (f \tau(u) + \nabla f \cdot \nabla u)),
\]

with an initial value condition

\[
u(0) = u_0.
\]

For the well-known equation, Tang [T] proved that it admits a global weak solution which is smooth except for finitely many points, if the domain manifold \(M \) is 2-dimensional closed, \(f \) is a smooth positive function and the initial value map belongs to \(W^{1,2}(M, S^2) \) (see also [St] and [G-H]). The bubbles which the weak solution blows are called as the magnetic bubbles ([Sh]). A natural question arises, where do the bubbling points of the Landau-Lifshitz equation locate? In this paper, we intend to answer this problem partially.

Throughout this paper, we will always assume that \(f \) is smooth and positive. In order to answer the above question, mathematically we need to consider the convergence and bubbling of the sequence of \(f \)-harmonic maps with coupling function \(f \). Precisely, we obtain the following results.

Theorem 1 Let \(D \) be the unit disc in \(\mathbb{R}^2 \). If \(u : D \setminus \{0\} \rightarrow N \) is a \(W^{2,2}_{\text{loc}} \)-map with finite energy and satisfies the following equation:

\[
\tau(u) = \alpha \nabla u + g
\]
where \(\alpha \in C^0(D) \), and \(g \in L^p(D, TN) \) for some \(p > 2 \), then \(u \) may be extended to a map \(\tilde{u} \in W^{2,p}(D, N) \).

Theorem 2 Let \((M, g)\) be a closed Riemann surface, and \(N \) a compact submanifold of \(\mathbb{R}^K \). Let \(f \) be a smooth positive function on \(M \). Assume that \(u_k \in W^{2,2}(M, N) \) is a sequence which satisfies

\[
 f \tau(u_k) + \nabla f \cdot \nabla u_k = \alpha_k
\]

and

\[
 \int_M |\nabla u_k|^2 f dV_g \leq C,
\]

where \(\alpha_k \in L^2(u^{-1}_k(TN)) \) and satisfies

\[
 ||\alpha_k||_{L^2} \to 0, \text{ as } k \to +\infty
\]

If \(p \) is a blow-up point of the sequence, i.e.

\[
 \lim_{r \to 0} \liminf_{k \to +\infty} \int_{B_r(p)} |\nabla u_k|^2 f dV_g > 0,
\]

then, \(p \) must be a critical point of \(f \).

Applying the above theorem to the inhomogeneous Landau-Lifshitz equation, we can partially answer the question mentioned before. Concretely, we come to the conclusions

Theorem 3 Let \((M, g)\) be a closed Riemann surface, and \(S^2 \) a unit sphere with standard metric. Suppose that the coupling function \(f \) is smooth and positive on \(M \) and \(u \in L^2((0, \infty); W^{2,2}(M, S^2)) \) is the unique weak solution for the initial value problem of the inhomogeneous Landau-Lifshitz equation with initial map \(u_0 \in W^{1,2}(M, S^2) \). If \(u(t) \equiv u(\cdot, t) \) blows up at time infinity, then, the blow-up points must be the critical points of the coupling function \(f \).

2 Removable singularity

It is well-known that the removable singularity theorem of Sacks-Uhlenbeck says that a harmonic map from \(D \setminus \{0\} \to N \) with finite energy can be extend to 0 smoothly. The main aim of this section is to generalize Sacks-Uhlenbeck’s theorem to the present case, i.e., to prove Theorem 1. The method adopted here is due to Sacks-Uhlenbeck essentially. One still sees that the Hopf differential is the key in the proof. However, in our case, the Hopf differential is no longer holomorphic, thus the proof should be a little more delicate than theirs.

Let us first recall the \(\epsilon \)-regularity discovered by Sacks and Uhlenbeck.

Lemma 2.1 Suppose that \(u \in W^{2,2}(D, N) \) satisfying

\[
 \tau(u) = g \in L^2(D, TN).
\]

Then there exits \(\epsilon > 0 \) such that if \(\int_D |\nabla u|^2 \leq \epsilon \) we have

\[
 ||u - \bar{u}||_{W^{2,2}(D)} \leq C(||\nabla u||_{L^2(D)} + ||g||_{L^2(D)}).
\]
Here \bar{u} is the mean value of u over the unit disc and $D_{\frac{1}{2}}$ is a disc with radius $\frac{1}{2}$ and centered at the origin.

Proof: cf [S-U], or [D], or [D-T].

Using the standard elliptic estimate, we have

Corollary 2.2 Suppose that $u \in W^{2,2}(D, N)$ satisfies

$$\tau(u) = \alpha \nabla u + g,$$ \hspace{1cm} (2.1)

where $\alpha(x) \in C^0(D)$ and $g \in L^p(D, TN)$ for some $p > 2$. Then, there exists $\epsilon > 0$ such that whenever $\int_D |\nabla u|^2 \leq \epsilon$ we have

$$|\nabla u|(0) \leq C(||\alpha||_{C^0(D)}, p)(||\nabla u||_{L^2(D)} + ||g||_{L^p(D)}).$$

In this section, we always assume u to be a map from $D \setminus \{0\}$ to N which belongs to $W^{2,2}_{\text{loc}}(D \setminus \{0\}, N)$ and satisfies the equation (2.1). In order to prove Theorem 1, we need to prove the following lemmas. First, we have

Lemma 2.3 There exists $\epsilon > 0$ such that if $\int_D |\nabla u|^2 dx < \epsilon$, then there holds true

$$|x| |\nabla u|(x) \leq C(||\nabla u||_{L^2(D_{2|x|})} + |x|^{2-\frac{2}{p}} \times ||g||_{L^p(D_{2|x|})})$$

for $\forall x \in D_{\frac{1}{2}}$, where C is a positive constant which depends only on ϵ.

Proof: Fix an $x_0 \in D_{\frac{1}{2}}$, we define $\tilde{u} = u(x_0 + x)$. Then we have

$$\tau(\tilde{u}) = |x_0|^2 g + |x_0| |\nabla \tilde{u}|.$$

Notice that $|\nabla \tilde{u}|(0) = |\nabla u||x_0|$, then we can get this Lemma from Corollary 2.2.

Now, let

$$\Psi = (u_x, u_x) - (u_y, u_y) - 2i (u_x, u_y) = 4 (\frac{\partial u}{\partial z}, \frac{\partial u}{\partial \bar{z}}),$$

where $z = x + iy$. It is easy to see that

$$\partial_\bar{z} \Psi = 8 (\Delta u, \frac{\partial u}{\partial \bar{z}}) = 8 (A(\bar{u}) (du, du) + \alpha \nabla u + g, \frac{\partial u}{\partial \bar{z}}) = 8 (\alpha \nabla u + g, \frac{\partial u}{\partial \bar{z}}).$$

We need to prove a Stokes type equality for the 1-form $z\Psi$.

Lemma 2.4 There holds true that

$$\int_{|z|=r} z \Psi dz = \int_{D_r} z \partial_\bar{z} \Psi d\bar{z} \wedge dz.$$

Proof: As

$$d(z \Psi dz) = \partial_\bar{z} (z \Psi dz) = z \partial_\bar{z} \Psi d\bar{z} \wedge dz,$$
by applying the Stokes formula, for any \(r_0 < r \), we have

\[
\int_{|z|=r \setminus |z|=r_0} z\Psi dz = \int_{D_r \setminus D_{r_0}} z\partial_\zeta \Psi d\zeta \wedge dz.
\]

By (2.2),

\[
\int_{D_{r_0}} |z\partial_\zeta \Psi d\zeta \wedge dz| \leq Cr_0 \int_{D_{r_0}} (|\alpha \nabla u|^2 + |g|^2)dx \rightarrow 0
\]
as \(r_0 \rightarrow 0 \). Therefore, to complete the proof of the Lemma, we only need to prove

\[
\int_{|z|=r_0} z\Psi dz = \sqrt{-1} \int_0^{2\pi} z^2\Psi d\theta |_{|z|=r_0} \rightarrow 0.
\]

However the last equality follows from Lemma 2.3.

Lemma 2.5 There holds

\[
\int_{D_r} \langle u_r, u_r \rangle - \int_{D_r} \langle u_\theta, u_\theta \rangle = O(r).
\]

Proof: By a direct computation, we have

\[
Re(z^2\Psi) = -|u_\theta|^2 + |z|^2|u_r|^2,
\]

then

\[
|Re\int_0^{2\pi} z^2\Psi d\theta| = |Im\int_{|z|=r} z\Psi dz|
\]

\[
= |Im\int_{D_r} z\partial_\zeta \Psi d\zeta \wedge d\zeta|
\]

\[
\leq \int_{D_r} |z\partial_\zeta \Psi d\zeta \wedge d\zeta|
\]

\[
\leq r \int_{D_r} |\alpha \nabla u + g||\nabla u|dx
\]

\[
\leq Cr \int_{D_r} (|g|^2 + |\alpha \nabla u|^2)dx.
\]

i.e.

\[
\int_0^{2\pi} |u_r(r, \theta)|^2 r^2 d\theta - \int_0^{2\pi} |u_\theta(r, \theta)|^2 r^2 d\theta = O(r).
\]

Therefore

\[
\int_{D_r} \langle (u_r, u_r) - \langle u_\theta, u_\theta \rangle \rangle = \int_0^{2\pi} \int_0^r (|u_r|^2 - \frac{1}{r^2}|u_\theta|^2) r d\theta dr
\]

\[
= \int_0^r O(r) dr = \int_0^r O(1) dr
\]

\[
= O(r).
\]

Proof of Theorem 1: As in [S-U], we approximate \(u \) by the function \(q \) which is harmonic on every domain,

\[
D_m(r_0) = \{ z : 2^{-m-1}r_0 < |z| < 2^{-m}r_0 \},
\]
and equals to

\[\frac{1}{2\pi} \int_{0}^{2\pi} u(2^{-m}r_0, \theta) d\theta \]

and

\[\frac{1}{2\pi} \int_{0}^{2\pi} u(2^{-m-1}r_0, \theta) d\theta \]

respectively on the boundaries \(\{ z : |z| = 2^{-m}r_0 \} \) and \(\{ z : |z| = 2^{-m-1}r_0 \} \). Then \(q \) is piecewise linear in \(\log r \) and depends only on the radial coordinate. Now, for \(2^{-m-1}r_0 \leq r \leq 2^{-m}r_0 \),

\[
|q(r) - u(r, \theta)| \leq |q(r) - q(2^{-m}r_0)| + |q(2^{-m}r_0) - u(r, \theta)| \\
\leq |q(2^{-m-1}r_0) - q(2^{-m}r_0)| + \frac{1}{2\pi} \int_{0}^{2\pi} |u(2^{-m}r_0, \theta') - u(r, \theta)| d\theta' \\
\leq C \sup_{2^{-m-1}r_0 \leq |r| \leq 2^{-m}r_0} r |\nabla u| \\
\leq C(||\nabla u||_{L^2(D_{2r})} + r^{2-\frac{2}{p}} ||g||_{L^p(D_{2r})}).
\]

Now, we estimate the difference between \(q \) and \(u \):

\[
\int_{D_{r_0}} |\nabla (u - q)|^2 = \sum_{m=0}^{\infty} r \int_{0}^{2\pi} (u(r, \theta) - q(r))(u_r(r, \theta) - q'(r)) d\theta |2^{-m}r_0|^2 \\
- \int_{D_{r}} (q - u)\Delta(q - u) dx.
\]

Since \(q'(r) = \text{constant} \times \frac{1}{r} \) on \(D_m(r_0) \),

\[
\int_{0}^{2\pi} (u(r, \theta) - q(r))q'(r) d\theta = 0, \quad \forall r = 2^{-m}r_0,
\]

Hence,

\[
\sum_{m=0}^{\infty} r \int_{0}^{2\pi} (u(r, \theta) - q(r))(u_r(r, \theta) - q'(r)) d\theta |2^{-m}r_0|^2 \\
= r \int_{0}^{2\pi} (u(r_0, \theta) - q(r_0))u_r(r_0, \theta) d\theta \\
- \lim_{m \to +\infty} 2^{-m}r_0 \int_{0}^{2\pi} (u(2^{-m}r_0, \theta) - q(2^{-m}r_0))u_r(2^{-m}r_0, \theta) d\theta.
\]

By Lemma 2.3, we have

\[
2^{-m}r_0 \int_{0}^{2\pi} (u(2^{-m}r_0, \theta) - q(2^{-m}r_0))u_r(2^{-m}r_0, \theta) d\theta \\
\leq ||u(2^{-m}r_0, \theta) - q(2^{-m}r_0)||_{L^\infty} \sup_{r=2^{-m}r_0} r |\nabla u(r, \theta)| \\
\to 0
\]

as \(m \to +\infty \).
Moreover, we have
\[
\begin{align*}
\frac{r_0}{2} \int_0^{2\pi} (u(r_0, \theta) - q(r_0)) u_r(r_0, \theta) d\theta &\leq r_0 \left(\int_0^{2\pi} (u(r_0, \theta) - q(r_0))^2 d\theta \right) \frac{1}{2} \\
&\leq \left(\int_0^{2\pi} |u_\theta(r_0, \theta)|^2 d\theta \right)^{\frac{1}{2}} \left(\int_0^{2\pi} r_0^2 |u_r(r_0, \theta)|^2 d\theta \right)^{\frac{1}{2}} \\
&\leq \frac{1}{2} \int_0^{2\pi} (|u_\theta(r_0, \theta)|^2 + |u_r(r_0, \theta)|^2 r_0^2) d\theta \\
&= \frac{r_0}{2} \int_0^{2\pi} |\nabla u(r_0, \theta)|^2 r_0 d\theta.
\end{align*}
\]

and
\[
\begin{align*}
\int_{D_{r_0}} |(q - u)(\Delta(q - u))| &= \int_{D_{r_0}} |q - u| \times |A(u)(du, du) - \alpha \nabla u - g| dx \\
&\leq ||q - u||_{L^\infty(\Omega)} (||A||_{L^\infty} \int_{D_{r_0}} |\nabla u|^2 dx + \sqrt{\pi r_0} ||\alpha \nabla u + g||_{L^2(\Omega)})
\end{align*}
\]

Obviously, for any 1 > \delta > 0, we can always pick up \(r_0 \) which is small enough such that
\[
\int_{D_{r_0}} |(q - u)(\Delta(q - u))| \leq \delta \int_{D_{r_0}} |\nabla u|^2 dx + r_0.
\]

Applying Lemma 2.5, we get
\[
\begin{align*}
\int_{D_{r_0}} |\nabla (u - q)|^2 dx &\geq \int_{D_{r_0}} (u_\theta, u_\theta) dx \\
&= \frac{1}{2} \int_{D_{r_0}} (\langle u_\theta, u_\theta \rangle + \langle u_r, u_r \rangle) dx \\
&\quad + \frac{1}{2} \int_{D_{r_0}} (\langle u_\theta, u_\theta \rangle - \langle u_r, u_r \rangle) dx \\
&= \frac{1}{2} \int_{D_{r_0}} |\nabla u|^2 dx + O(r_0).
\end{align*}
\]

Then, from (2.3), (2.4), (2.5) and (2.6) we can derive
\[
\lambda \int_{D_{r_0}} |\nabla u|^2 \leq r_0 \int_0^{2\pi} |\nabla u(r_0, \theta)|^2 r_0 d\theta + Cr_0,
\]

where \(\lambda \) is a positive constant which is smaller than 1.

Set
\[
f(r) = \int_{D_r} |\nabla u|^2 dx,
\]

then we have
\[
\lambda f(r) < rf'(r) + Cr.
\]

Hence,
\[
\left(\frac{f}{r^\lambda} \right)' \geq -Cr^{-\lambda}.
\]
By integrating the above differential inequality over the interval \([r, 1]\), we obtain

\[f(r) \leq C r^\lambda \int_r^1 s^{-\lambda} ds + f(1) r^\lambda \leq C r^\lambda. \]

By applying Lemma 2.3, it follows from the above inequality that

\[|\nabla u|(x) \leq |x|^{\lambda - 1}. \]

Thus, we can complete the proof of the theorem by standard elliptic estimate theory.

3 A variational formula

For the inhomogeneous functional \(E_f(\cdot)\) defined on \(W^{1,2}(M, N)\), we can see easily that the first variational formula at point \(u \in W^{2,2}(M, N)\) can be written as

\[dE_f(\xi) = \int_M < f \tau(u) + \nabla u \nabla f, \xi > dV_g, \]

for any \(\xi \in T_u W^{1,2}(M, N)\). Here, we need to derive another formula of \(E_f(\cdot)\) with respect to the variation of the domain manifold. The following calculation is essentially due to Price ([P]).

Take an 1-parameter family of transformations \(\{\phi_s\}\) of \(M\), which is generated by the vector field \(X\), we have

\[E_f(u \circ \phi_s) = \frac{1}{2}\int_M |\nabla (u \circ \phi_s)|^2 f(x)dV_g \]

\[= \frac{1}{2}\int_M \sum_\alpha |d(u \circ \phi_s)(e_\alpha)|^2 f(x)dV_g(x) \]

\[= \frac{1}{2}\int_M \sum_\alpha |du(\phi_s(e_\alpha))|^2 (\phi_s(x))f(x)dV_g(x) \]

\[= \frac{1}{2}\int_M \sum_\alpha |du(\phi_s(e_\alpha))|^2 (x)f(\phi_s^{-1})(\phi_s(x))dV_g, \]

where \(\{e_\alpha\}\) is a local orthonormal basis of \(TM\). Noting

\[\frac{d}{ds} \text{Jac}(\phi_s^{-1})dV_g|_{s=0} = -\text{div}(X)dV_g, \quad \frac{d}{ds} f(\phi_s) = -df(X), \]

we have

\[\frac{d}{ds} E_f(u \circ \phi_s)|_{s=0} = -\frac{1}{2}\int_M |\nabla u|^2 f \text{div}(X)dV_g - \frac{1}{2}\int_M df(X)|\nabla u|^2 dV_g \]

\[+ \sum_\alpha \int_M \langle du(\nabla e_\alpha X), du(e_\alpha) \rangle f dV_g. \]

So, we have proved the formula

\[dE_f(u)(u_*(X)) = -\frac{1}{2}\int_M |\nabla u|^2 f \text{div}(X)dV_g - \frac{1}{2}\int_M df(X)|\nabla u|^2 dV_g \]

\[+ \sum_\alpha \int_M \langle du(\nabla e_\alpha X), du(e_\alpha) \rangle f dV_g. \]
4 The proof of Theorems

The task of this section is to prove our theorem 2 and 3. In fact, what Theorem 2 concerns is just the blow-up analysis for a so-called Palais-Smale sequence of $E_f(u)$. We will focus on what occur if the sequence is not compact in the Sobolev space $W^{1,2}(M, N)$.

Proof of Theorem 2: By the assumptions stated in Theorem 2, $\{u_k\} \subset W^{2,2}(M, N)$ is a Palais-Smale sequence of maps from M into N. Then, it satisfies

$$f\tau(u_k) + \nabla f\nabla u_k = \alpha_k$$ \hspace{1cm} (4.1)

where $\alpha_k \in u_k^{-1}(TN)$ and satisfies

$$||\alpha_k||_{L^2} \to 0.$$ \hspace{1cm} (4.2)

First, we note that in a local complex coordinates (4.1) can be written as

$$f\tau_0(u_k) + \nabla_0 f \cdot \nabla_0 u_k = |\beta|\alpha_k$$

where τ_0 and ∇_0 are the operators defined on \mathbb{R}^2 with standard Euclidean metric, since τ is conformally invariant operator. Without loss of generality, we may assume $g = dx^2 + dy^2$ on a complex coordinate system.

Set

$$S \equiv \{x : \lim_{r \to 0} \liminf_{k \to +\infty} \int_{D_r(x)} |\nabla u_k|^2 dV_g > 0\}.$$

Usually, we say x is a bubbling point for the sequence $\{u_k\}$ if and only if $x \in S$. It is easy to see that S contains only finite points. By the Lemma 2.1, for any $x_0 \in S$, we have

$$\lim_{k \to +\infty} \int_{D_r(x)} |\nabla u_k|^2 dV_g > \epsilon, \text{ for any } r > 0.$$

By the weak compactness of $W^{1,2}(M, N)$ we know that there exists a subsequence of $\{u_k\}$, still denoted by $\{u_k\}$, and $u \in W^{1,2}(M, N)$ with

$$E_f(u) < +\infty,$$

such that $\{u_k\}$ converges weakly to u in $W^{1,2}(M, N)$, which is an f–harmonic map. Moreover, Theorem 1, Lemma 2.1, Corollary 2.2 and elliptic estimate theory tell us that $u \in C^\infty(M, N)$ and

$$u_k \to u$$

in $W^{1,q}(\Omega, N)$ for any $\Omega \subset \subset M \setminus S$ and $q > 1$.

Thus, to prove Theorem 2 we need only to prove

$$S \subset \{\text{the critical points of } f\}.$$

Now, pick up a point $p \in S$. As we have pointed out, we may assume $g = dx^2 + dy^2$ in a complex coordinate chart \mathcal{N} around p. Without the loss of generality, we may assume that $p = (0, 0)$, $Q = [-1, 1] \times [-1, 1] \subset \mathcal{N}$ and $Q \cap S = \{p\}$. If p is not the critical point of f, then, without loss of generality, we may suppose that

$$df(0) = \lambda dx,$$
where λ is a positive constant. Thus, in the neighborhood of p, $df(x) = \lambda dx + O(r)$ where $r^2 = x^2 + y^2$.

We need to choose two functions to cut off the vector field $\frac{\partial}{\partial x}$ respectively in x and y directions. First, we take a cut off function $\sigma \in C^\infty(\mathbb{R})$ which is 1 on $[-\delta, \delta]$, and 0 on $[-2\delta, 2\delta]^c$, where

$$\delta = \frac{\lambda \epsilon}{16||\nabla u||_{C^0(Q)||f||_{C^0}}.}$$

Then, we define the other function as following

$$\eta(t) = \begin{cases} 1 & \text{if } |t| \leq b' \\
(b - t)/(b - b') & \text{if } b' \leq t \leq b \\
(b + t)/(b - b') & \text{if } -b \leq t \leq -b' \\
0 & \text{if } t > b \text{ or } t < -b. \end{cases}$$

Here b and b' are chosen to satisfy $0 < a < b' < b < 2a < 1$ where a is a constant such that

$$\int_{[-2a,2a] \times [-1,1]} \nabla u \leq \frac{\lambda \epsilon}{8||\sigma||_{C^0}||f||_{C^0}}.$$ \hspace{1cm} (4.4)

Set

$$X = \eta(x) \sigma(y) \frac{\partial}{\partial x}.$$

By a direct computation, we have

$$\text{div}(X) = \eta'(x) \sigma(y),$$

$$\sum_{\alpha} \langle du_k(\nabla \epsilon, X), du_k(\epsilon) \rangle = \eta'(x) \sigma(y) \left| \frac{\partial u_k}{\partial x} \right|^2 + \eta(x) \sigma'(y) \left(\frac{\partial u_k}{\partial x}, \frac{\partial u_k}{\partial y} \right).$$

By the formula derived in section 3, we have

$$\int_{Q} \eta'(x) \sigma(y) \left| \frac{\partial u_k}{\partial x} \right|^2 - \left| \frac{\partial u_k}{\partial y} \right|^2 f dx dy - 2 \int_{Q} \eta(x) \sigma'(y) \left(\frac{\partial u_k}{\partial x}, \frac{\partial u_k}{\partial y} \right) f dx dy$$

$$= \int_{Q} (\lambda + O(r)) \eta'(x) \sigma(y)|\nabla u_k|^2 dx dy + 2 \int_{Q} (\alpha_k, u_k(X)) dx dy.$$

Note that

$$\text{supp}(\eta'(x) \sigma(y)) \cup \text{supp}(\eta(x) \sigma'(y)) \subset Q \setminus (-a, a) \times (-\delta, \delta),$$

we can replace Q in the left side of the above equality with $Q \setminus (-a, a) \times (-\delta, \delta)$.

For arbitrarily fixed a and δ, u_k is bounded in $W^{2,2}(Q \setminus (-\frac{a}{2}, \frac{a}{2}) \times (-\frac{\delta}{2}, \frac{\delta}{2}))$. So, by taking a subsequence, we have $\nabla u_k \rightarrow \nabla u$ in $L^2(Q \setminus (-a, a) \times (\delta, \delta))$. Therefore

$$- \int_{Q} \eta'(x) \sigma(y) \left(\frac{\partial u_k}{\partial x} \right)^2 - \left(\frac{\partial u_k}{\partial y} \right)^2 f dx dy \rightarrow - \int_{Q} \eta'(x) \sigma(y) \left(\frac{\partial u}{\partial x} \right)^2 - \left(\frac{\partial u}{\partial y} \right)^2 f dx dy, \hspace{1cm} (4.5)$$

and

$$-2 \int_{Q} \eta(x) \sigma'(y) \left(\frac{\partial u_k}{\partial x}, \frac{\partial u_k}{\partial y} \right) f dx dy \rightarrow -2 \int_{[-2a,2a] \times [-1,1]} \eta(x) \sigma'(y) \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} \right) f dx dy$$

$$\leq 2 ||\sigma'||_{C^0} ||f||_{C^0} \int_{[-2a,2a] \times [-1,1]} |\nabla u|^2 dx dy \hspace{1cm} (4.6)$$

$$< \frac{\lambda \epsilon}{4},$$
where we have used (4.4) in the last inequality. Moreover, once \(\delta \) and \(a \) are chosen, then
\[
\int_{[-a,a] \times [-\delta,\delta]} |\nabla u_k|^2 \, dx \, dy \geq \epsilon
\]
when \(k \) is sufficiently large. Hence
\[
\int_Q (\lambda + O(r))\eta(x)\sigma(y)|\nabla u_k|^2 \, dx \, dy + 2 \int_Q \langle \alpha_k, u_k(X) \rangle \, dx \, dy > \frac{1}{2} \lambda \epsilon. \tag{4.7}
\]
In view of (4.5), (4.6) and (4.7), we have
\[
\int_Q \eta'(x)\sigma(y)(-\left|\frac{\partial u}{\partial x}\right|^2 + \left|\frac{\partial u}{\partial y}\right|^2) \, dx \, dy > \frac{1}{4} \lambda \epsilon.
\]
Letting \(b' \to b \), we get
\[
\int_{|x|=b} \sigma(y)(-\left|\frac{\partial u}{\partial x}\right|^2 + \left|\frac{\partial u}{\partial y}\right|^2) \, dy > \frac{1}{4} \lambda \epsilon.
\]
Recall that \(\text{supp} \sigma \subset [-2\delta, 2\delta] \), then
\[
\delta > \frac{\lambda \epsilon}{16\|\nabla u\|_{C^0}^2\|f\|_{C^0}}
\]
which contradicts the definition of \(\delta \). It means that \(\lambda \) must be zero. Therefore \(p \) is a critical point of \(f \). Thus we complete the proof of Theorem 2.

Now, we return back to our problem on the location of the bubbling points of the weak solutions to the inhomogeneous Landau-Lifshitz equations. Consider the following initial value problem:
\[
\begin{cases}
\partial_t u = u \wedge (f(x)\Delta u + \nabla f \cdot \nabla u) - u \wedge (u \wedge (f(x)\Delta u + \nabla f \cdot \nabla u)), \\
u(0) = u_0(x) \in W^{1,2}(M, S^2).
\end{cases}
\]
Noting \(|u|^2 \equiv 1 \) and the following identity
\[
u \wedge (u \wedge (f(x)\Delta u + \nabla f \cdot \nabla u)) = (u \cdot (f(x)\Delta u + \nabla f \cdot \nabla u))u - (u \cdot u)(f(x)\Delta u + \nabla f \cdot \nabla u),
\]
we can see easily that the above equations may be rewritten by
\[
\begin{cases}
\partial_t u = f(x)\tau(u) + \nabla f \cdot \nabla u + u \wedge (f(x)\tau(u)) + \nabla f \cdot \nabla u, \\
u(0) = u_0(x) \in W^{1,2}(M, S^2).
\end{cases} \tag{4.8}
\]
Here \(\tau(u) = \Delta u + |\nabla u|^2 u \) is the tension field of map \(u : M \to S^2 \).

Tang has ever employed Struwe’s method to study the existence and uniqueness of the above equation. We outline the argument in [T] as follows

1. \(\exists T > 0 \), s.t. the solution (4.8) solvable on \(M \times [0, T) \).
2. \(u(t) \) blow-up at finitely many points.
3. \(u(t) \) converges to a \(u(T) \in W^{1,2}(M, N) \) weakly, and on any sub-domain which does not contain any bubbling points, \(u(t) \) strongly converges to \(u(T) \) locally.

Then, we construct a new flow which stems from \(u_T \). Then, by the same argument as in [St] we know that There exists \(T_1 > 0 \) such that the new flow exists on the interval \([T, T_1) \) and blows
up at T_1. At each bubbling point, $u(t)$ blows one or more bubbles, i.e. one or more non-constant harmonic maps. It is well-known that $u(t)$ must lose energy at every bubbling point. Hence, we always have \tilde{T} such that
\[
\partial_t u = f(x)\tau(u) + \nabla f \cdot \nabla u + u \wedge (f(x)\tau(u) + \nabla f \cdot \nabla u),
\]
\[
 u(0) = u(\tilde{T}) \in W^{1,2}(M, S^2).
\]
is solvable on $[0, \infty)$. The results in [T] can be summarized in the following lemma.

Lemma 4.1 Let (M, g) be a closed Riemann surface and f be a smooth positive function on M. For any $u_0 \in W^{1,2}(M, S^2)$ there exists a distribution solution $u: M \times \mathbb{R} \to S^2$ of the above equation which is smooth on $M \times \mathbb{R}^+$ away from at most finitely many points (x_k, t_k), $1 \leq k \leq K_0$, $0 < t_k \leq \infty$, which satisfies the energy inequality $E_f(u(s)) \leq E_f(u(t))$ for all $0 \leq s \leq t$, and which assumes its initial data continuously in $W^{1,2}(M, S^2)$. The solution is unique in this class.

It is easy to see the following identity holds for the solution to (4.8) and any $0 < t_1 < t_2 \leq \infty$
\[
E_f(u(t_1)) - E_f(u(t_2)) = -\int_{t_1}^{t_2} \|\partial_t u\|^2_{L^2} dt.
\]
Hence, it follows
\[
\int_0^{+\infty} \|\partial_t u\|^2_{L^2} < +\infty.
\]
This implies that there exists a sequence $\partial_t u(x, t_i)$ such that
\[
\|\partial_t u(x, t_i)\|_{L^2} \to 0.
\]
So, $\{u(t_i)\}$ is a Palais-Smale sequence of $E_f(u)$. Therefore, if $u(t)$ does blow up at infinity, then, by applying Theorem 2 we obtain the conclusion of Theorem 3.

As another example, we may also consider the gradient flow of the function E_f, i.e. a solution of
\[
\left\{
\begin{array}{l}
 u_t = f(x)\tau(u) + \nabla f \cdot \nabla u, \\
 u(0) = u_0 \in W^{1,2}(M, N).
\end{array}
\right.
\]
If $u(t)$ does blow up at infinity, we also have results similar to Theorem 3.

References

[D] Ding, W., An Introduction to harmonic maps.

Yuxiang Li
ICTP, Mathematics Section, Strada Costiera 11, I-34014 Trieste, Italy
E-mail address: liy@ictp.it

Youde Wang
Institute of Mathematics, AMSS, CAS
E-mail address: wyd@math.ac.cn