The Gauss-Bonnet-Grotemeyer Theorem in spaces of constant curvature *

Eric L. Grinberg and Haizhong Li

Abstract

In 1963, K.P. Grotemeyer proved an interesting variant of the Gauss-Bonnet Theorem. Let M be an oriented closed surface in the Euclidean space \mathbb{R}^3 with Euler characteristic $\chi(M)$, Gauss curvature G and unit normal vector field \vec{n}. Grotemeyer’s identity replaces the Gauss-Bonnet integrand G by the normal moment $(\vec{a} \cdot \vec{n})^2 G$, where a is a fixed unit vector: $\int_M (\vec{a} \cdot \vec{n})^2 G dv = \frac{2\pi}{3} \chi(M)$. We generalize Grotemeyer’s result to oriented closed even-dimensional hypersurfaces of dimension n in an $(n+1)$-dimensional space form $N^{n+1}(k)$.

2000 Mathematics Subject Classification: Primary 53C42, Secondary 53A10.

Key words and phrases: Gauss-Bonnet Theorem, Gauss-Kronecker curvature, hypersurfaces.

1. Introduction

In 1963, K.P. Grotemeyer proved the following interesting result:

Theorem 1 [Gr] Let M be an oriented closed surface in 3-dimensional Euclidean space \mathbb{R}^3 with Gauss curvature G and a unit normal vector field \vec{n}. Then for any fixed unit vector \vec{a} in \mathbb{R}^3, we have

$$\int_M (\vec{a} \cdot \vec{n})^2 G dv = \frac{2\pi}{3} \chi(M),$$

(1.1)

where $\vec{a} \cdot \vec{n}$ denotes the inner product of \vec{a} and \vec{n}, $\chi(M)$ is the Euler characteristic of M.

Remark 1.1 Let $\{E_1, E_2, E_3\}$ be a fixed orthogonal frame in \mathbb{R}^3 and choose $\vec{a} = E_i$. We have

$$\int_M (E_i \cdot \vec{n})^2 G dv = \frac{2\pi}{3} \chi(M), \quad i = 1, 2, 3$$

(1.2)

*The project is partially supported by the grant No. 10531090 of NSFC.
Noting that \(\sum_i (E_i \cdot \vec{n})(E_i \cdot \vec{n}) = \vec{n} \cdot \vec{n} = 1 \), we obtain the following Gauss-Bonnet formula via summation of (1.2) over \(i \) from 1 to 3:

Corollary 1 (Gauss-Bonnet Theorem). Under the same hypothesis of Theorem 1, we have

\[
\int_M Gdv = 2\pi \chi(M). \tag{1.3}
\]

Thus we can consider Grotemeyer’s Theorem 1 as an extended form of the Gauss-Bonnet Theorem.

Let \(n \) be even and let \(N^{n+1}(k) \) be an \((n+1)\)-dimensional simply connected Riemannian manifold of constant sectional curvature \(k \). That is, \(N^{n+1}(k) = \mathbb{R}^{n+1} \) if \(k = 0 \); \(N^{n+1}(k) = S^{n+1}(\frac{1}{\sqrt{k}}) \), an \((n+1)\)-dimensional sphere space with radius \(\frac{1}{\sqrt{k}} \) if \(k > 0 \); \(N^{n+1}(k) = H^{n+1}(\frac{1}{\sqrt{-k}}) \), an \((n+1)\)-dimensional hyperbolic space with, as Bolyai would say, radius \(\sqrt{-1}/\sqrt{k} \) if \(k < 0 \). We will often call \(N^{n+1}(k) \) a space form. We will view \(N^{n+1}(k) \) as standardly imbedded in an appropriate linear space \(L_{n+1}(k) \) (\(\mathbb{R}^{n+2} \) if \(k > 0 \), \(\mathbb{R}^{n+1,1} \) if \(k < 0 \) and \(\mathbb{R}^{n+1} \) if \(k = 0 \)).

This will enable us to define functions on \(M \) such as \((\vec{a} \cdot \vec{n}) \), where \(\vec{a} \) is a fixed vector in the ambient linear space, \(\vec{n} \) is a normal vector field on \(M \), and \((\cdot) \) denotes the inner product on the ambient linear space. The generalized Grotemeyer Theorem we have in mind can be stated as follows:

Theorem 2 Let \(n \) even, \(n \geq 2 \). Let \(\vec{x} : M \to N^{n+1}(k) \) be an immersed \(n \)-dimensional oriented closed hypersurface in the \((n+1)\)-dimensional space form \(N^{n+1}(k) \), with Euler characteristic \(\chi(M) \), Gauss-Kronecker curvature \(G \) and unit normal vector field \(\vec{n} \). Assume that \(N^{n+1}(k) \) is standardly imbedded in the linear space \(L_{n+1}(k) \). Then for any fixed unit vector \(\vec{a} \) in \(L_{n+1}(k) \) we have

\[
\int_M (\vec{a} \cdot \vec{n})^2 Gdv = \frac{1}{n+1} [\frac{\text{vol}S^n(1)}{2} \chi(M) - \sum_i c_i k^i \int_M K_{n-2i} dv] + \frac{1}{n+1} \int_M (\vec{a} \cdot \vec{n})(\vec{a} \cdot \vec{x}) K_{n-1} dv - \frac{k}{n+1} \int_M (\vec{a} \cdot \vec{x})^2 Gdv, \tag{1.4}
\]

where the \(c_i \) are constants that depend only on the dimension \(n \) and \(K_i \) is the \(i \)-th mean curvature of \(M \).

In the case \(n = 2 \) in the Theorem above, we obtain

Corollary 2 Let \(M \) be an oriented closed surface in the 3-dimensional space form \(N^3(k) \) with extrinsic curvature \(G \) and unit normal vector field \(\vec{n} \). Then for any fixed unit vector \(\vec{a} \) in the linear space \(L_3(k) \) we have

\[
\int_M (\vec{a} \cdot \vec{n})^2 Gdv = \frac{2\pi}{3} \chi(M) - \frac{k}{3} \text{vol}(M) + \frac{k}{2} \int_M (\vec{a} \cdot \vec{n})(\vec{a} \cdot \vec{x}) K_1 dv - \frac{k}{2} \int_M (\vec{a} \cdot \vec{x})^2 Gdv, \tag{1.5}
\]

where \(K_1 \) is the mean curvature of \(M \) and \(\chi(M) \) is the Euler characteristic of \(M \).
Remark 1.2 Our Corollary reduces to Grotemeyer’s original theorem in the case $k = 0$.

Remark 1.3 In the case $k = 0$ and $n \geq 3$, Theorem 2 was proved by B. -Y. Chen in [Ch] by a different method.

Remark 1.4. We can recover the standard Gauss-Bonnet Theorem from our Theorem as follows. Let m be the dimension of the linear space $L_{n+1}(k)$. (Thus $m = n + 1$ in the flat case, $m = n + 2$ in the positive and negatively curved cases.) Let $\{E_1, \cdots, E_m\}$ be a fixed orthonormal frame in $L_{n+1}(k)$; choose $\vec{a} = E_i$. Then

\[
\int_M (E_i \cdot \vec{n})^2 G dv = \frac{1}{n+1} \left[\frac{\text{vol}^n(S^1)}{2} x(M) - \sum_i c_i k^i \int_M K_{n-2} dv \right] + \frac{k}{n+1} \int_M G(E_i \cdot x)^2 dv, \quad (i = 1, 2, \ldots) \tag{1.6}
\]

Noting $\sum_i (E_i \cdot \vec{n})(E_i \cdot \vec{n}) = \vec{n} \cdot \vec{n} = 1$ and $\sum_i (E_i \cdot \vec{n})(E_i \cdot x) = \vec{n} \cdot x = 0$, we obtain the following Gauss-Bonnet formula by summing of (1.6) over all appropriate i:

Corollary 3 (Gauss-Bonnet Theorem). Under the same hypothesis of Theorem 2, we have

\[
\int_M G dv = \frac{\text{vol}^n(S^1)}{2} \chi(M) - \sum_i c_i k^i \int_M K_{n-2} dv \tag{1.7}
\]

where $\chi(M)$ is the Euler characteristic of M, constants c_i depends only on dimension n, and K_i is the i-th mean curvature of M.

So we can view Theorem 2 as an extended form of the Gauss-Bonnet Theorem.

2. Reilly’s operator and its properties

In order to prove Theorem 2, we need to recall Reilly’s operator and its properties. Let (M, g) be a closed n-dimensional Riemannian manifold, let $\{e_1, \cdots, e_n\}$ be a local orthonormal frame field in M with dual coframe field $\{\theta_1, \cdots, \theta_n\}$. Given a symmetric tensor $\phi = \sum_{i,j} \phi_{ij} \theta_i \theta_j$ defined on M we define a second order differential operator

\[
\Box \equiv \Box_\phi : C^\infty(M) \to C^\infty(M), \quad \Box f = \sum_{i,j} \phi_{ij} f_{ij} \tag{2.1}
\]

where f_{ij} are the components of the second covariant differential of f, as follows:

\[
df = \sum_i f_i \theta_i, \quad df_i + \sum_j f_j \theta_{ji} = \sum_j f_{ij} \theta_j, \tag{2.2}
\]
where \(\{ \theta_{ij} \} \) is the Levi-Civita connection of \(g \).

For the following criterion for self-adjointness of the operator \(\Box \) see Cheng-Yau [CY] or Li [L1],[L2].

Proposition 2.1 Let \(M \) be a closed orientable Riemannian manifold with symmetric tensor \(\phi = \sum_{i,j} \phi_{ij} \theta_i \theta_j \). Then \(\Box \) is a selfadjoint operator if and only if

\[
\sum_{j=1}^{n} \phi_{ij,j} = 0, \quad 1 \leq i \leq n.
\]

(2.3)

Here \(\phi_{ij,k} \) is the derivative of the tensor \(\phi_{ij} \) in the direction \(e_k \).

Remark 2.1 We call \(\Box \) the Cheng-Yau operator. It was introduced by S.Y. Cheng and S.T. Yau in 1977 [CY]. If \(\phi = \sum_{i,j} \phi_{ij} \theta_i \theta_j \) satisfies the Cheng-Yau condition (2.3), then

\[
\Box f = \sum_{i,j} \phi_{ij} f_{ij} = \sum_{i,j} (\phi_{ij} f_i)_j = \text{div}(\phi \nabla f).
\]

Let \(x : M \to N^{n+1}(k) \) be an \(n \)-dimensional closed hypersurface in an \((n + 1) \)-dimensional space form of constant sectional curvature \(k \). Let \((h_{ij}) \) be the components of the second fundamental form of \(M \). We recall the Reilly operator, which is a second order differential operator \(L_r : C^\infty(M) \to C^\infty(M) \) defined by

\[
L_r f = \sum_{i,j} T_{ij}^r f_{ij}, \quad f \in C^\infty(M),
\]

(2.4)

where \(T_{ij}^r \) is given by

\[
T_{ij}^0 = \delta_{ij}, \quad T_{ij}^r = K_r \delta_{ij} - \sum_k h_{ik} T_{kj}^{r-1}, \quad r = 1, 2, \ldots, n.
\]

(2.5)

(See Reilly [Re], Rosenberg [Ro] or Barbosa-Colares [BC].)

Denote the \(r \)-th mean curvature of \(M \) by

\[
K_r = \sum_{i_1 < \cdots < i_r} k_{i_1} \cdots k_{i_r}, \quad B = (h_{ij}) = (k_i \delta_{ij}).
\]

(2.6)

We note that the Gauss-Kronecker curvature of \(M \) is \(G \equiv K_n \).

Definition 2.1 ([Re]) The \(r \)-th Newton transformation, \(r \in \{0, 1, \ldots, n\} \) is the linear transformation

\[
T_r = K_r I - K_{r-1} B + \cdots + (-1)^r B^r,
\]

(2.7)

i.e.,

\[
T_{ij}^r = K_r \delta_{ij} - K_{r-1} h_{ij} + \cdots + (-1)^r \sum_{j_1, \ldots, j_r} h_{ij_1} h_{j_1 j_2} \cdots h_{j_r j_r}.
\]

(2.7)′
If \(I \equiv i_1, \ldots, i_q \) and \(J \equiv j_1, \ldots, j_q \) are multi-indices of integers between 1 and \(n \), define

\[
\delta_J^I = \begin{cases}
1, & \text{if } i_1, \ldots, i_q \text{ are distinct and } J \text{ is an even permutation of } I \\
-1, & \text{if } i_1, \ldots, i_q \text{ are distinct and } J \text{ is an odd permutation of } I \\
0, & \text{otherwise}
\end{cases}
\]

Then we have (see Reilly [Re])

\[
K_r = \frac{1}{r!} \sum \delta_{i_1 \cdots i_r}^{j_1 \cdots j_r} h_{i_1 j_1} \cdots h_{i_r j_r}. \tag{2.8}
\]

Proposition 2.2 The matrix of \(T_r \) is given by

\[
T_{ij}^r = \frac{1}{r!} \sum \delta_{i_1 \cdots i_r}^{j_1 \cdots j_r} h_{i_1 j_1} \cdots h_{i_r j_r}. \tag{2.9}
\]

Proposition 2.3 For each \(r \), we have

1. \(\text{div} T_r = \sum_j T_{ij,j}^r = 0 \),
2. Newton’s formula: \(\text{trace}(BT_r) = (r + 1)K_{r+1} \),
3. \(\text{trace}(T_r) = (n - r)K_r \)

Proposition 2.4 Let \(\bar{x} : M \to N^{n+1}(k) \) be an \(n \)-dimensional hypersurface with unit normal vector field \(\vec{n} \). Then we have

\[
x_i = e_i, \quad \vec{n}_i = -\sum_j h_{ij} e_j, \quad x_{ij} = h_{ij} \vec{n} - kx \delta_{ij}. \tag{2.10}
\]

\[
L_r \bar{x} = (r + 1)K_{r+1} \vec{n} - (n - r)kK_r \bar{x}, \tag{2.11}
\]

Proof. Let \(\vec{a} \) be a fixed vector in \(L_n(k) \). Write

\[
f = \vec{n} \cdot \vec{a}, \quad g = \bar{x} \cdot \vec{a}. \tag{2.12}
\]

Then (2.11) is equivalent to

\[
L_r g = (r + 1)K_{r+1} f - (n - r)kK_r g. \tag{2.11}'
\]

Choosing an orthonormal frame \(\{e_1, \ldots, e_n, \vec{n}\} \) and their dual frame \(\{\theta_1, \ldots, \theta_n, \theta_{n+1}\} \) along \(M \) in \(N^{n+1}(k) \), we have the structure equations

\[
dx = \sum_i \theta_i e_i, \quad de_i = \sum_j \theta_{ij} e_j + \sum_j h_{ij} \theta_j \vec{n} - kx \theta_i, \quad d\vec{n} = -\sum_{i,j} h_{ij} \theta_j e_i. \tag{2.13}
\]
Here we have sometimes abbreviated \(\bar{x} \) as merely \(x \), for simplicity. By use of (2.13) and through a direct calculation we get

\[
g_i = e_i \cdot \bar{a}, \quad g_{ij} = fh_{ij} - kg_{ij}.
\]

(2.14)

By use of proposition 2.3 and (2.14), we get

\[
L_rg = \sum_{i,j} T_{rij}g_{ij} = \sum_{ij} T_{ij}h_{ij}f - kg \sum_{i,j} T_{ij}^r \delta_{ij} = (r + 1)K_{r+1}f - k(n - r)gK_r.
\]

Thus we have proved (2.11)', which is equivalent to (2.11).

Similarly, from definitions of \(f_i \), we get by use of (2.13)

\[
f_i = -\sum_j h_{ij} (e_j \cdot \bar{a}).
\]

(2.15)

Because \(\bar{a} \) is arbitrary, we have proved (2.10) from (2.14) and (2.15).

Proposition 2.5 Let \(M \) be an \(n \)-dimensional oriented closed hypersurface in \((n + 1)\)-dimensional space form \(N^{n+1}(k) \). Then for any smooth functions \(f \) and \(g \) on \(M \) we have

\[
\int_M gL_{n-1}fdv = \int_M fL_{n-1}gdv, \quad \int_M L_{n-1}fdv = 0.
\]

(2.16)

Proof. Choosing \(r = n - 1 \) in (1) of proposition 2.3, and using the criterion from proposition 2.1, we know that the operator \(L_{n-1} \) is a self-adjoint operator. Thus we obtain (2.16).

Proposition 2.6 Let \(M \) be an \(n \)-dimensional hypersurface in \((n + 1)\)-dimensional space form \(N^{n+1}(k) \). Then we have

\[
G\delta_{ij} - \sum_k h_{ik}T_{kj}^{n-1} = 0.
\]

(2.17)

Proof. Choosing \(r = n - 1 \) in (2.5) and noting that \(G = K_n \), we have

\[
T_{ij}^n = G\delta_{ij} - \sum_k h_{ik}T_{kj}^{n-1}.
\]

(2.18)

From the definition of \(T_{ij}^n \) in (2.9) and the definition of \(\delta_{i_1 \cdots i_n}^{j_1 \cdots j_n} \), we have

\[
T_{ij}^n = 0.
\]

(2.19)

Now (2.17) follows from (2.18) and (2.19).
3. Proof of Theorem 2

Proposition 3.1 Let \(x : M \to N^{n+1}(k) \) be an \(n \)-dimensional oriented closed hypersurface in \((n+1)\)-dimensional space form \(N^{n+1}(k) \). Assume \(M \) has Gauss-Kronecker curvature \(G = K_n \) and a unit normal vector \(\vec{n} \). Then for any fixed unit vector \(\vec{a} \) in \(L_{n+1}(k) \), we have

\[
0 = (n + m) \int_M (\vec{a} \cdot \vec{n})^{m+1} Gdv - m \int_M (\vec{a} \cdot \vec{n})^{m-1} Gdv + k \int_M (\vec{a} \cdot \vec{n})^m (\vec{a} \cdot \vec{x}) K_{n-1}dv + mk \int_M (\vec{a} \cdot \vec{n})^{m-1}(\vec{a} \cdot \vec{x})^2 Gdv,
\]

(3.1)

where \(K_{n-1} \) is the \((n-1)\)-th mean curvature of \(M \).

Proof. Write

\[
f = q^m x, \quad q = \vec{a} \cdot \vec{n}.
\]

(3.2)

By definition of the first derivative and the second derivative of \(f \) (see (2.2)), we have

\[
f_i = (q^m)_i x + q^m x_i,
\]

(3.3)

\[
f_{ij} = (q^m)_{ij} x + (q^m)_i x_j + (q^m)_j x_i + q^m x_{ij}.
\]

(3.4)

By definition of operator \(L_{n-1} \), we have

\[
L_{n-1}(f) = xL_{n-1}(q^m) + 2 \sum_{i,j} T_{ij}^{n-1}(q^m)_i x_j + q^m L_{n-1} x.
\]

(3.5)

Let \(r = n - 1 \) in (2.11). We have

\[
L_{n-1} x = nG\vec{n} - kK_{n-1} x.
\]

(3.6)

By Proposition 2.5, (3.6), (2.10) and proposition 2.6, we get by integrating (3.5) over \(M \)

\[
0 = 2 \int_M q^m (L_{n-1} x) dv + 2 \int_M \sum_{i,j} T_{ij}^{n-1}(q^m)_i x_j dv
\]

\[
= 2 \int_M q^m (nG\vec{n} - kK_{n-1} x) dv + 2 \int_M \sum_{i,j,k} T_{ijk}^{n-1} m q^{m-1} [-h_{ik}(\vec{a} \cdot e_k) e_j] dv
\]

\[
= 2 \int_M q^m (nG\vec{n} - kK_{n-1} x) dv - 2m \int_M q^{n-1} G \sum_j (\vec{a} \cdot e_j) e_j dv
\]

\[
= 2 \int_M q^m (nG\vec{n} - kK_{n-1} x) dv - 2m \int_M q^{n-1} G[\vec{a} - (\vec{a} \cdot \vec{n})\vec{n} - k(\vec{a} \cdot \vec{x})\vec{x}] dv,
\]

(3.7)

that is, we obtain for \(m = 1, 2, 3, \cdots \)

\[
0 = (n + m) \int_M q^m G\vec{n} dv - m \int_M q^{m-1} G\vec{a} dv
\]

\[
- k \int_M q^m K_{n-1} x dv + mk \int_M q^{m-1}(x \cdot \vec{a}) G x dv.
\]

(3.8)

Taking the scalar product of \(\vec{a} \) with both sides of (3.8), we get Proposition 3.1.
Remark 3.1 Equation (3.1) was proved by Bang-Yen Chen in the case $k = 0$ by a different method.

Proof of Theorem 2 Choosing $m = 1$ in Proposition 3.1, we have

$$
(n + 1) \int_M (\vec{a} \cdot \vec{n})^2 G dv = \int_M G dv + k \int_M (\vec{a} \cdot \vec{n})(\vec{a} \cdot \vec{x}) K_{n-1} dv
$$

(3.9)

Because M is a closed hypersurface in $N^{n+1}(k)$, the Gauss-Bonnet Theorem states in this case that

$$
\int_M G dv = \frac{\text{vol} S^n(1)}{2} \chi(M) - \sum_{i} c_i k i \int_M K_{n-2} dv,
$$

(3.10)

where $\chi(M)$ is the Euler characteristic of M, the constants c_i depend only on dimension n, and K_i is the i-th mean curvature of M. (See p. 1105 of [So]; c.f. [C1], [C2].) Inserting (3.10) into (3.9), we have proved our Theorem 2. On the other hand, by choosing $m = 0$ in (3.1), we have

Corollary 3.1 (Bivens [Bi]) Let $x : M \to N^{n+1}(k)$ be an n-dimensional closed oriented hypersurface in $N^{n+1}(k)$. Then

$$
\int_M [n(\vec{a} \cdot \vec{n})G - k(\vec{a} \cdot \vec{x})K_{n-1}] dv = 0,
$$

(3.11)

where \vec{a} is any fixed unit vector in the linear space $L_{n+1}(k)$, G is the Gauss-Kronecker curvature of M and K_{n-1} is the $(n-1)$-th mean curvature of M.

Remark 3.2 Write $q = \vec{a} \cdot \vec{n}$, from Proposition 3.1, we have

$$
\int_M q^m G dv = \frac{m - 1}{n + m - 1} [\int_M q^{m-2} G dv - k \int_M q^{m-2}(x \cdot \vec{a})^2 G dv + \frac{k}{m - 1} \int_M q^{m-1}(x \cdot \vec{a}) K_{n-1} dv].
$$

(3.12)

By a direct calculation using (3.12), (3.10) and Corollary 3.1, we obtain

Proposition 3.2 Let n and m be even. Under the same hypothesis of Proposition 3.1, we have

$$
\int_M \frac{q^m G dv}{(m-1)(n-1)} = \frac{\text{vol} S^n(1)}{2} \chi(M) - \sum_{i} c_i k i \int_M K_{n-2} dv
$$

$$
- k \int_M \frac{m-1}{n+m-1} q^{m-2} + \frac{(m-1)(n-3)}{(n+m-1)(n+m-3)} q^{m-4} + \cdots + \frac{(m-1)(n-3) \cdots 2}{(n+m-1)(n+m-3) \cdots 2} (x \cdot \vec{a})^2 G dv
$$

$$
+ k \int_M \frac{1}{n+m-1} q^{m-1} + \frac{1}{n+m-1} q^{m-3} + \cdots + \frac{1}{n+m-1} q^1 (x \cdot \vec{a}) K_{n-1} dv.
$$

(3.13)

Also, for n even and m odd, we have

$$
\int_M \frac{q^m G dv}{(m-1)(n-1)} = - k \int_M \frac{m-1}{n+m-1} q^{m-2} + \frac{(m-1)(n-3)}{(n+m-1)(n+m-3)} q^{m-4} + \cdots + \frac{(m-1)(n-3) \cdots 2}{(n+m-1)(n+m-3) \cdots 2} (x \cdot \vec{a})^2 G dv
$$

$$
+ k \int_M \frac{1}{n+m-1} q^{m-1} + \frac{1}{n+m-1} q^{m-3} + \cdots + \frac{1}{n+m-1} q^1 (x \cdot \vec{a}) K_{n-1} dv.
$$

(3.14)
Note: In the case $k = 0$, Proposition 3.2 was proved by Bang-Yen Chen; see Theorem 2 in [Ch].

Acknowledgements. The authors began this research works when H. Li visited department of mathematics and statistics in University of New Hampshire on July of 2006. H. Li would like to thank E.L.G. and department faculty members for their hospitality and the help they extended to him for his academic visit.

References

Eric L. Grinberg
Department of Mathematics & Statistics
University of New Hampshire
Durham, NH 03824
United States of America
Email: grinberg@unh.edu

Haizhong Li
Department of Mathematical Sciences
Tsinghua University
100084, Beijing
People’s Republic of China
Email: hli@math.tsinghua.edu.cn