Willmore Surfaces in S^n *

HAIZHONG LI*

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China. e-mail: hli@math.tsinghua.edu.cn

(Received: 15 October 2001; accepted: 11 December 2001)

Abstract. A surface $x: M \rightarrow S^n$ is called a Willmore surface if it is a critical surface of the Willmore functional. It is well known that any minimal surface is a Willmore surface and that many nonminimal Willmore surfaces exists. In this paper, we establish an integral inequality for compact Willmore surfaces in S^n and obtain a new characterization of the Veronese surface in S^4 as a Willmore surface. Our result reduces to a well-known result in the case of minimal surfaces.

Key words: Willmore surface, minimal surface, pinching, Veronese surface.

1. Introduction

Let $x: M \rightarrow S^n$ be a surface in an n-dimensional unit sphere space S^n. If h^a_{ij} denotes the second fundamental form of M, S denotes the square of the length of the second fundamental form, H denotes the mean curvature vector, and H denotes the mean curvature of M, then we have

$$S = \sum_\alpha \sum_{i,j} (h^a_{ij})^2, \quad H = \sum_\alpha H^a e_\alpha, \quad H^a = \frac{1}{2} \sum_k h^a_{kk}, \quad H = |H|,$$

where e_α ($3 \leq \alpha \leq n$) are orthonormal vector fields of M in S^n.

We define the following nonnegative function on M:

$$\rho^2 = S - 2H^2,$$ \hfill (1.1)

which vanishes exactly at the umbilic points of M.

The Willmore functional is the following non-negative functional (see [2, 4] or [21])

$$W(x) = \int_M \rho^2 \, dv = \int_M (S - 2H^2) \, dv,$$ \hfill (1.2)

* Supported by a research fellowship of the Alexander von Humboldt Stiftung 2001/2002 and the Zhongdian grant of the NSFC.

** Institut für Mathematik, MA 8-3, Technische Universität Berlin, Strasse des 17. Juni 136, 10623 Berlin, Germany. e-mail: hli@sfb288.math.tu-berlin.de.
it was shown in [4] (also see [17, 19]) that this functional is an invariant under conformal transformations of S^n. The Willmore conjecture says that $W(x) \geq 4\pi^2$ holds for all immersed tori $x: M \to S^3$. The conjecture has been proved in some conformal classes by Li and Yau [12] and Montiel and Ros [14]. The conjecture is also known to be true for flat tori (see [5]) and tori whose images under stereographic projection are surfaces of revolution in R^3 (see [8, 10]). It is a natural idea to approach the Willmore conjecture by studying the critical surfaces of the Willmore functional $W(x)$. A surface in S^n is called a Willmore surface if it is a critical surface of the above Willmore functional.

Let M be a surface in S^n, it was proved by Bryant in the case $n = 3$ (see [2]) and by Weiner [18] in the general case $n \geq 3$, that M is a Willmore surface if and only if

$$\Delta^\perp H^\alpha + \sum_{\beta, i, j} h^\alpha_{ij} h^\beta_{ij} H^\beta - 2H^2 H^\alpha = 0, \quad 3 \leq \alpha \leq 2 + p.$$ \hspace{1cm} (1.3)

Remark 1.1. From (1.3), it is obvious that all minimal surfaces in S^n are Willmore surfaces (see [18]). In [5], Pinkall constructed many compact nonminimal flat Willmore surfaces in S^3. In [3], Castro and Urbano constructed many compact nonminimal Willmore surfaces in S^4 and Ejiri [7] constructed a compact nonminimal flat Willmore surfaces in S^5.

In order to state our main result, we first recall the following example:

EXAMPLE 1 (see [6]). Veronese surface. Let (x, y, z) be the canonical coordinate system in R^3 and $u = (u_1, u_2, u_3, u_4, u_5)$ the canonical coordinate system in R^5. We consider the mapping defined by

$$u_1 = \frac{1}{\sqrt{3}}yz, \quad u_2 = \frac{1}{\sqrt{3}}xz, \quad u_3 = \frac{1}{\sqrt{3}}xy,$$

$$u_4 = \frac{1}{2\sqrt{3}}(x^2 - y^2), \quad u_5 = \frac{1}{6}(x^2 + y^2 - 2z^2),$$

where $x^2 + y^2 + z^2 = 3$. This defines an isometric immersion of $S^2(\sqrt{3})$ into $S^4(1)$. Two points (x, y, z) and $(-x, -y, -z)$ of $S^2(\sqrt{3})$ are mapped into the same point of S^4. This real projective plane imbedded in S^4 is called the Veronese surface. We know that the Veronese surface is a minimal surface in S^4 (see [6]), thus it is a Willmore surface. We also note that ρ^2 of the Veronese surface satisfies

$$\rho^2 = \frac{4}{3}.$$ \hspace{1cm} (1.4)

In the theory of minimal surfaces in S^n, the following integral inequality is well known:
THEOREM 1 ([1] or [13]). Let M be a compact minimal surface with Gauss curvature K in an n-dimensional unit sphere S^n. Then we have

$$\int_M (1 - K)(3K - 1) \, dv \leq 0. \quad (1.5)$$

In particular, if

$$\frac{1}{3} \leq K \leq 1, \quad (1.6)$$

then either $K = 1$ and M is totally geodesic or $K = 1/3$, $n = 4$ and M is the Veronese surface given by Example 1.

For minimal surfaces in S^n, the Gauss equation reads $2K = 2 - S$, thus Theorem 1 is equivalent to:

THEOREM 2. Let M be a compact minimal surface in an n-dimensional unit sphere S^n. Then we have

$$\int_M S (2 - \frac{4}{3}S) \, dv \leq 0. \quad (1.5')$$

In particular, if

$$0 \leq S \leq \frac{4}{3}, \quad (1.6')$$

then either $S = 0$ and M is totally geodesic, or $S = 4/3$, $n = 4$ and M is the Veronese surface given by Example 1.

In this paper we prove the following integral inequality for compact Willmore surfaces in S^n.

THEOREM 3. Let M be a compact Willmore surface in an n-dimensional unit sphere S^n. Then we have

$$\int_M \rho^2 \left(2 - \frac{4}{3}\rho^2\right) \, dv \leq 0. \quad (1.7)$$

In particular, if

$$0 \leq \rho^2 \leq \frac{4}{3}, \quad (1.8)$$

then either $\rho^2 = 0$ and M is totally umbilic, or $\rho^2 = 4/3$. In the latter case, $n = 4$ and M is the Veronese surface given by Example 1.

Remark 1.2. In the case of minimal surfaces, Theorem 3 reduces to Theorem 2.
Remark 1.3. In [11], we proved an integral inequality for compact \((n-1)\)-dimensional Willmore hypersurfaces in \(S^n\). In the case \(n = 3\), our result is:

THEOREM 4 (see [11, theorem 3]). Let \(M\) be a compact Willmore surface in \(S^3\). Then we have

\[
\int_M \rho^2 (2 - \rho^2) \, dv \leq 0.
\] (1.9)

In particular, if

\[
0 \leq \rho^2 \leq 2,
\] (1.10)

then either \(\rho^2 = 0\) and \(M\) is totally umbilic, or \(\rho^2 = 2\) and

\[
M = S^1 \left(\frac{1}{\sqrt{3}} \right) \times S^1 \left(\frac{1}{\sqrt{3}} \right).
\]

Remark 1.4. We would like to mention the following recent paper: Zhen Guo, H. Li and C. P. Wang, The second variational formula for Willmore submanifolds in \(S^n\), Res. in Math. 40 (2001), 205–225. In this paper, authors studied the stability of \(m\)-dimensional Willmore submanifolds in a sphere and constructed some examples of Willmore submanifolds. In particular they proved that minimal submanifolds are not necessary to be Willmore submanifolds for \(m \geq 3\), but all \(m\)-dimensional minimal Einstein submanifolds in a sphere are Willmore submanifolds.

2. Preliminaries

Let \(x: M \to S^n\) be a surface in an \(n\)-dimensional unit sphere. We choose an orthonormal basis \(e_1, \ldots, e_n\) of \(S^n\) such that \(\{e_1, e_2\}\) are tangent to \(x(M)\) and \(\{e_3, \ldots, e_n\}\) is a local frame in the normal bundle. Let \(\{\omega_1, \omega_2\}\) be the dual forms of \(\{e_1, e_2\}\).

We use the following convention on the ranges of indices:

\[
1 \leq i, j, k, \ldots \leq 2; \quad 3 \leq \alpha, \beta, \gamma, \ldots \leq n.
\]

Then we have the structure equations

\[
dx = \sum_i \omega_i e_i,
\] (2.1)

\[
de_i = \sum_j \omega_{ij} e_j + \sum_{\alpha, j} h^\alpha_{ij} \omega_j e_\alpha - \omega_i x,
\] (2.2)

\[
de_\alpha = -\sum_{i, j} h^\alpha_{ij} \omega_j e_i + \sum_\beta \omega_\alpha e_\beta, \quad h^\alpha_{ij} = h^\alpha_{ji}.
\] (2.3)
The Gauss equations and Ricci equations are

\[R_{ijkl} = (\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) + \sum_{\alpha} (h_{ij}^\alpha h_{kl}^\alpha - h_{il}^\alpha h_{jk}^\alpha), \quad (2.4) \]

\[R_{ik} = \delta_{ik} + 2 \sum_{\alpha} H^\alpha h_{ik}^\alpha - \sum_{\alpha, j} h_{ij}^\alpha h_{jk}^\alpha, \quad (2.5) \]

\[2K = 2 + 4H^2 - S, \quad (2.6) \]

\[R_{\beta\alpha ikl} = \sum_i (h_{\beta 1}^\alpha h_{ikl}^\alpha - h_{\beta 2}^\alpha h_{ikl}^\alpha), \quad (2.7) \]

where \(K \) is the Gauss curvature of \(M \) and \(S = \sum_{\alpha, i, j} (h_{ij}^\alpha)^2 \) is the square of the norm of the second fundamental form; \(H = \sum_{\alpha} H^\alpha e_\alpha = (1/2) \sum_{\alpha} (\sum_k h_{ik}^\alpha) e_\alpha \) is the mean curvature vector and \(H = |H| \) is the mean curvature of \(M \).

By Gauss equation (2.6), (1.2) becomes

\[W(x) = 2 \int_M (H^2 - K + 1) \, dv. \quad (2.8) \]

It was shown in [4] and [19] that this functional is an invariant under conformal transformations of \(S^n \).

We have the following Codazzi equations and Ricci identities:

\[h_{ijk}^\alpha - h_{ikj}^\alpha = 0, \quad (2.9) \]

\[h_{ijkl}^\alpha - h_{ijlk}^\alpha = \sum_m h_{mj}^\alpha R_{mikl} + \sum_m h_{im}^\alpha R_{mjkl} + \sum_\beta h_{ij}^\beta R_{\beta kkl}, \quad (2.10) \]

where \(h_{ijk}^\alpha \) and \(h_{ijkl}^\alpha \) are defined by

\[\sum_k h_{ijk}^\alpha \omega_k = dh_{ij}^\alpha + \sum_k h_{ikj}^\alpha \omega_k + \sum_k h_{ijk}^\alpha \omega_k + \sum_\beta h_{ij}^\beta \omega_{\beta k}, \quad (2.11) \]

\[\sum_l h_{ijkl}^\alpha \omega_l = dh_{ijk}^\alpha + \sum_l h_{jik}^\alpha \omega_l + \sum_l h_{ijkl}^\alpha \omega_l + \sum_\beta h_{ijl}^\beta \omega_{\beta k} + \sum_\beta h_{ijl}^\beta \omega_{\beta k}. \quad (2.12) \]

As \(M \) is a two-dimensional surface, we have from (2.6) and (1.1)

\[2K = 2 + 4H^2 - S = 2 + 2H^2 - \rho^2, \quad (2.13) \]

\[R_{ijkl} = K (\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}), \quad R_{ik} = K \delta_{ik}. \quad (2.14) \]
LEMMA 2.1. Let \(x: M \to S^n \) be a surface. Then we can write, for \(3 \leq \alpha \leq n \),

\[
\frac{h_{11}^\alpha - h_{22}^\alpha}{2} = \lambda \cos \theta_\alpha, \quad \sum_\alpha \cos^2 \theta_\alpha = 1, \quad \lambda \geq 0, \tag{2.15}
\]

\[
h_{12}^\alpha = \mu \cos \phi_\alpha, \quad \sum_\alpha \cos^2 \phi_\alpha = 1, \quad \mu \geq 0, \tag{2.16}
\]

\[
\rho^2 = 2(\lambda^2 + \mu^2). \tag{2.17}
\]

Proof. By choosing

\[
\lambda = \frac{1}{2} \sqrt{\sum_\alpha (h_{11}^\alpha - h_{22}^\alpha)^2}, \quad \mu = \sqrt{\sum_\alpha (h_{12}^\alpha)^2}, \tag{2.18}
\]

we get (2.15) and (2.16). (2.17) comes from (1.1) and (2.18). \(\square \)

LEMMA 2.2. Let \(x: M \to S^n \) be a surface. Then we have

\[
\frac{1}{2} \Delta \sum_{\alpha,i,j} (h_{ij}^\alpha)^2 \geq |\nabla h|^2 + \sum_{\alpha,i,j} (h_{ij}^\alpha h_{kki}^\alpha) - 4|\nabla^\perp H|^2 + 2(1 + H^2) \rho^2 - \frac{3}{2} \rho^4, \tag{2.19}
\]

where

\[
|\nabla h|^2 = \sum_{\alpha,i,j} (h_{ij}^\alpha)^2 \quad \text{and} \quad |\nabla^\perp H|^2 = \sum (H_{ij}^\alpha)^2.
\]

Proof. Using (2.7), (2.9), (2.10), (2.13) and (2.14), we have the following calculations:

\[
\frac{1}{2} \Delta \sum_{\alpha,i,j} (h_{ij}^\alpha)^2
\]

\[
= \sum_{\alpha,i,j} (h_{ij}^\alpha)^2 + \sum_{\alpha,i,j} h_{ij}^\alpha h_{ij}^\alpha
\]

\[
= \sum_{\alpha,i,j} (h_{ij}^\alpha)^2 + \sum_{\alpha,i,j} h_{ij}^\alpha h_{kki}^\alpha + \sum_{\alpha,i,j} (h_{ij}^\alpha h_{km}^\alpha R_{mijk} + h_{ij}^\alpha h_{mi}^\alpha R_{mj}) +
\]

\[
+ \sum_{\alpha,i,j} h_{ij}^\alpha h_{\beta i}^\alpha R_{\beta ijk}
\]

\[
= \sum_{\alpha,i,j} (h_{ij}^\alpha)^2 + \sum_{\alpha,i,j} h_{ij}^\alpha h_{kki}^\alpha + 2K \rho^2 + \sum_{\alpha,\beta} \left[\sum_i (h_{ij}^\alpha h_{i2}^\alpha - h_{ij}^\alpha h_{i1}^\alpha) \right] R_{\beta i12}
\]

\[
= \sum_{\alpha,i,j} (h_{ij}^\alpha)^2 + \sum_{\alpha,i,j} h_{ij}^\alpha h_{kki}^\alpha + 2K \rho^2 - \sum_{\alpha,\beta} (R_{\beta i12})^2. \tag{2.20}
\]
From (2.7), (2.15) and (2.16)

\[
R_{\beta \alpha \alpha 12} = \sum_{i=1}^{2} (h_{1i}^\beta h_{i1}^\alpha - h_{2i}^\beta h_{i1}^\alpha)
\]

\[
= (h_{11}^\beta - h_{22}^\beta)h_{11}^\alpha - (h_{11}^\alpha - h_{22}^\alpha)h_{12}^\beta
\]

\[
= 2\lambda \mu (\cos \theta_\beta \cos \phi_\alpha - \cos \theta_\alpha \cos \phi_\beta).
\]

Putting (2.21) into (2.20) and using (2.13), we have

\[
\frac{1}{2} \Delta \sum_{\alpha, i, j} (h_{ij}^\alpha)^2
\]

\[
= \sum_{\alpha, i, j, k} (h_{ijk}^\alpha)^2 + \sum_{\alpha, i, j} h_{ij}^\alpha h_{kij}^\alpha + 2K \rho^2
\]

\[- 4\lambda^2 \mu^2 \sum_{\alpha, \beta} (\cos \theta_\beta \cos \phi_\alpha - \cos \theta_\alpha \cos \phi_\beta)^2
\]

\[
= \sum_{\alpha, i, j, k} (h_{ijk}^\alpha)^2 + \sum_{\alpha, i, j} h_{ij}^\alpha h_{kij}^\alpha + 2K \rho^2
\]

\[- 4\lambda^2 \mu^2 \left[2 \sum_{\alpha, \beta} \cos^2 \theta_\beta \cos^2 \phi_\alpha - 2 \sum_{\alpha, \beta} \cos \theta_\beta \cos \theta_\alpha \cos \phi_\beta \cos \phi_\alpha \right]
\]

\[
= |\nabla h|^2 + \sum_{\alpha, i, j, k} (h_{ij}^\alpha h_{kij}^\alpha) - \sum_{\alpha, i, j, k} h_{ij}^\alpha h_{kij}^\alpha + 2K \rho^2
\]

\[- 4\lambda^2 \mu^2 \left[2 - 2 \left(\sum_{\alpha} \cos \theta_\alpha \cos \phi_\alpha \right)^2 \right]
\]

\[
\geq |\nabla h|^2 + \sum_{\alpha, i, j, k} (h_{ij}^\alpha h_{kij}^\alpha) - 4 \sum_{\alpha, i} (H_{ij}^\alpha)^2 + 2(1 + H^2) \rho^2 - \frac{1}{2} \rho^4,
\]

(2.22)

and, for the inequality, we used

\[
8\lambda^2 \mu^2 \leq 2(\lambda^2 + \mu^2)^2 = \frac{1}{2} \rho^4.
\]

The following Euler–Lagrange equation for the Willmore functional was derived by Weiner in [18].

Lemma 2.3. Let \(x: M \to S^n \) be a surface in an \(n \)-dimensional unit sphere \(S^n \). Then \(M \) is a Willmore surface if and only if

\[
\Delta^{\perp} H^\alpha + \sum_{\beta, i, j} h_{ij}^\alpha h_{ij}^\beta H^\beta - 2H^2 H^\alpha = 0, \quad 3 \leq \alpha \leq n.
\]

(2.23)
We also need the following lemma to prove our Theorem 3:

LEMMA 2.4. Let \(M \) be a surface in \(S^n \), then we have

\[
|\nabla h|^2 \geq 3|\nabla^\perp H|^2,
\]

where

\[
|\nabla h|^2 = \sum_{\alpha,i,j,k} (h_{ijk}^\alpha)^2, \quad |\nabla^\perp H|^2 = \sum_{\alpha,i} (H_i^\alpha)^2, \quad H_i^\alpha = \nabla_i H^\alpha.
\]

Proof. We construct the following symmetric tracefree tensor:

\[
F_{ijk}^\alpha = h_{ijk}^\alpha - \frac{1}{2}(H_i^\alpha \delta_{jk} + H_j^\alpha \delta_{ik} + H_k^\alpha \delta_{ij}).
\]

(2.25)

Then we can easily compute

\[
|F|^2 = \sum_{\alpha,i,j,k} (F_{ijk}^\alpha)^2 = |\nabla h|^2 - 3|\nabla^\perp H|^2
\]

and we get \(|\nabla h|^2 \geq 3|\nabla^\perp H|^2 \), which proves Lemma 2.4.

Remark 2.1. The analogue of Lemma 2.4 for hypersurfaces in \(S^n \) can be found in [1, 9, 11].

Now we define the following tracefree tensor

\[
\tilde{h}_{ij}^\alpha = h_{ij}^\alpha - H^\alpha \delta_{ij},
\]

(2.26)

then Lemma 2.3 becomes

LEMMA 2.5. Let \(x: M \to S^n \) be a surface in an \(n \)-dimensional unit sphere \(S^n \). Then \(M \) is a Willmore surface if and only if

\[
\Delta^\perp H^\alpha + \sum_{\beta,i,j} \tilde{h}_{ij}^\alpha \tilde{h}_{ij}^\beta H^\beta = 0, \quad 3 \leq \alpha \leq n.
\]

(2.27)

LEMMA 2.6. Let \(x: M \to S^n \) be a Willmore surface, then

\[
\int_M |\nabla^\perp H|^2 = \int_M \sum_{\alpha,i} (H_i^\alpha)^2 = \int_M \sum_{\alpha,\beta} \tilde{\sigma}_{\alpha\beta} H^\alpha H^\beta,
\]

(2.28)

where

\[
\tilde{\sigma}_{\alpha\beta} = \sum_{i,j} \tilde{h}_{ij}^\alpha \tilde{h}_{ij}^\beta.
\]

(2.29)
Proof. By use of (2.27), we have
\[
|\nabla^\perp H|^2 = \sum_{\alpha,i} (H_{\alpha}^i)^2
\]
\[
= \sum_{\alpha,i} (H_{\alpha}^i H_{\alpha}^i) - \sum_{\alpha} H_{\alpha}^2 \Delta^\perp H_{\alpha}^\alpha
\]
\[
= \sum_{\alpha,i} (H_{\alpha}^i H_{\alpha}^i) + \sum_{\alpha,\beta} \tilde{\sigma}_{\alpha\beta} H_{\alpha}^\alpha H_{\beta}^\beta. \tag{2.30}
\]

We get (2.28) by integrating (2.30) over \(M \).

We note that the \((n - 2) \times (n - 2)\)-matrix \((\tilde{\sigma}_{\alpha\beta})\) is symmetric, then it can be assumed to be diagonal for a suitable choice of \(e_3, \ldots, e_n \). We set
\[
\tilde{\sigma}_{\alpha\beta} = \tilde{\sigma}_{\alpha\delta} \tilde{\sigma}_{\delta\beta}. \tag{2.31}
\]

By use of (2.8), (2.26) and (2.29), we have
\[
\rho^2 = \sum_{\alpha} \tilde{\sigma}_{\alpha}. \tag{2.32}
\]

3. Proof of Theorem 3

In this section, we give the proof of Theorem 3. Integrating (2.19) over \(M \), by using Lemmas 2.4 and 2.6 we have
\[
0 \geq \int_M \left[(|\nabla h|^2 - 3|\nabla^\perp H|^2) - |\nabla^\perp H|^2 + 2(1 + H^2)\rho^2 - \frac{3}{2}\rho^4 \right]
\]
\[
\geq \int_M \left[-|\nabla^\perp H|^2 + 2(1 + H^2)\rho^2 - \frac{3}{2}\rho^4 \right]
\]
\[
= \int_M (2 - \frac{3}{2}\rho^2) \rho^2 + \int_M H^2 \rho^2 + \int_M \left(H^2 \rho^2 - \sum_{\alpha,\beta} H_{\alpha}^\alpha H_{\beta}^\beta \tilde{\sigma}_{\alpha\beta} \right)
\]
\[
\geq \int_M (2 - \frac{3}{2}\rho^2) \rho^2 + \int_M \left(H^2 \rho^2 - \sum_{\alpha,\beta} H_{\alpha}^\alpha H_{\beta}^\beta \tilde{\sigma}_{\alpha\beta} \right). \tag{3.1}
\]

From (2.31) and (2.32), we get
\[
H^2 \rho^2 = \left(\sum_{\alpha} (H_{\alpha}^\alpha)^2 \right) \left(\sum_{\beta} \tilde{\sigma}_{\beta} \right) \geq \sum_{\alpha} (H_{\alpha}^\alpha)^2 \tilde{\sigma}_{\alpha} = \sum_{\alpha,\beta} H_{\alpha}^\alpha H_{\beta}^\beta \tilde{\sigma}_{\alpha\beta}. \tag{3.2}
\]
Putting (3.2) into (3.1), we reach the following integral inequality:

$$\int_M \rho^2 \left(2 - \frac{3}{2} \rho^2\right) \leq 0.$$

(3.3)

Therefore we have proved the integral inequality (1.7) in Theorem 3.

If (1.8) holds, then from (3.3) we conclude that either $\rho^2 \equiv 0$ or $\rho^2 \equiv 4/3$. In the first case, we know that $S \equiv 2H^2$, i.e. M is totally umbilic; in the latter case, i.e., $\rho^2 \equiv 4/3$, (3.1) becomes an equality, thus we have

$$\int_M H^2 \rho^2 = 0.$$

(3.4)

Formula (3.4) implies that $H = 0$, thus $x: M \to S^n$ is a minimal surface with $S = 4/3$.

From Theorem 2 we can conclude that $n = 4$ and $x: M \to S^4$ is a Veronese surface, which is given by Example 1. We complete the proof of Theorem 3.

Acknowledgement

The author would like to express his thanks to Udo Simon for his help and suggestions.

References

