Smash Products of Quasi-hereditary Graded Algebras

Bin Zhu

Fakultät für Mathematik, Universität Bielefeld , D-33501 Bielefeld; Department of Mathematics, Biejing Normal University, 100875 Biejing P.R.China

Abstract. The Smash product of a finite dimensional quasi-hereditary algebra graded by a finite group with the group is proved to be a quasi-hereditary algebra. Some elementary relations between the good modules of the two quasi-hereditary algebras are given.

Keywords. Quasi-hereditary algebras, group graded algebras, smash products.

Mathematics Subject Classification. 16G10, 16G20, 16W30.

Quasi-hereditary algebras have been defined by Cline, Parshall, and Scott [2] in order to deal with highest weight categories as they arise in the representation theory of semisimple complex Lie-algebras. Many algebras which arise rather natural have been shown to be quasi-hereditary: the Schur algebras[9], the Auslander algebras[4], and the endomorphism algebra of direct sum of all indecomposable Δ -good modules for any $\mathcal{F}(\Delta)$ -finite quasi-hereditary algebra[13], and so on. In this note, we will prove that the smash product $\Lambda \# G^*$ of a quasi-hereditary G-graded algebra Λ with G is a quasi-hereditary algebra.

Quasi-hereditary algebras depend heavily on the ordering of the simple modules. Let \mathcal{K} be an algebraically closed field. For a finite dimensional algebra Λ over \mathcal{K} , we fix an ordering on the simple Λ -modules: S(1), S(2), \cdots , S(n). Let P(i) be the projective cover of S(i), Q(i) the injective envelope of S(i). We denote by $\Delta(i)$ the maximal factor of P(i) with composition factors of the form S(j), where $j \leq i$, and similarly, let $\nabla(i)$ be the maximal submodule of Q(i) with composition factors of form S(j), where $j \leq i$. Let $\Delta = {\Delta(1), \cdots, \Delta(n)}, \nabla = {\nabla(1), \cdots, \nabla(n)}$. We denote by $\mathcal{F}(\Sigma)$ the full subcategory of $mod\Lambda$ consisting of modules which have a filtration with factors in Σ , where $mod\Lambda$ denotes the category of f.g. left modules over Λ and Σ is a set of modules. This modules are said to be Σ -good. The algebra Λ is called quasi-hereditary with respect to the ordering of simple modules (written as q.h. algebra for simplicity) if $End(\Delta(i))$ is a division ring, for all $i = 1, \dots, n$, and $P(i) \in \mathcal{F}(\Delta)$ for all i. For a q.h. algebra, $\mathcal{F}(\Delta)$ has (relative) Auslander-Reiten sequences[10]. In case there are only finitely many isomorphism classes of indecomposable A-modules which belong to $\mathcal{F}(\Delta)$, we say that A is $\mathcal{F}(\Delta)$ -finite.

Definition 1. A \mathcal{K} -algebra Λ is called a G-graded algebra if $\Lambda = \bigoplus_{a \in G} \Lambda_q$ (as \mathcal{K} -subspaces) and $\Lambda_q \Lambda_h \subseteq \Lambda_{qh}$, for all $g, h \in G$.

For a G-graded algebra, we can construct another \mathcal{K} -algebra, which is called the smash product of Λ with G(compare [1],[3],[7]) as follows: let

 $\Lambda \# G^* = \bigoplus_{g \in G} \Lambda p_g \text{ be the free left } \Lambda - \text{module on the generators } p_g, \ g \in G$

G. Elements xp_g , yp_h multiply by

$$(xp_g)(yp_h) = xy_{qh^{-1}}p_h,$$

where x_g denotes the g-component of x.

With this multiplication, the free module is an associative $\mathcal{K}-$ algebra. $\Lambda \# G^*$ has no identity, but it has local identity in general. In case of G being finite, $\Lambda \# G^*$ has an identity. It was proved in [7] that $\Lambda \# G^* \cong (\Lambda_{gh^{-1}})_{G \times G}$, where $(\Lambda_{gh^{-1}})_{G \times G}$, denotes the ring consisting of functions from $G \times G$ to Λ with only finitely many non-zero values, and such that f(g,h) must be in $\Lambda_{gh^{-1}}$.

Let $\Lambda = \bigoplus_{g \in G} \Lambda_g$ be a G-graded algebra with identity 1 and with a complete set of orthogonal idempotents $e_i, i = 1, ..., n$, and with $e_i \in \Lambda_e$. We denote the category of G-graded Λ -module by Λ -Gr, denote the full subcategory of Λ -Gr consisting of finite generated Λ -module by Λ -gr. There is an isomorphic functor F from $\Lambda \# G^*$ -Mod to Λ -Gr, whose restriction on $\Lambda \# G^*$ -mod is again an isomorphic functor from $\Lambda \# G^*$ -mod to Λ -gr, which we denote also by F [7]. For a graded module M, M[g] denotes the suspension image of M [8]. A module M in Λ -mod is called gradable if there exists a graded module M_1 such that $M = M_1$ as Λ -modules. The following lemma was proved in [5] in the case Λ is Z-graded, here we point out it is true for arbitrary group graded algebras.

Lemma 1. Let Λ be a G-graded algebra. Then each simple Λ -module is gradable.

Proof. Let S(i) be simple Λ -module. Then $S(i) = \frac{P(i)}{radP(i)}$. We know that $P(i) = \Lambda e_i, e_i \in \Lambda_e$, is gradable. Then if we prove that rad P(i) is gradable, this will imply that S(i) is gradable. We notice that

$$radP(i) = \sum_{f \in Hom(P,P(i)), P \text{ is } proj, f \text{ is not } epi} Im(f).$$

For every homomorphism $f \in Hom_{\Lambda}(P, P(i))$, we can write f as $f = \sum_{g \in G} f_g$,

where f_g is a homomorphism of degree g from P to P(i) [8](where P and P(i) are viewed as graded modules). Then

$$\sum_{f \in Hom(P,P(i)), P \text{ is proj, } f \text{ is not epi}} Im(f)$$

$$= \sum_{f \in \bigcup_{g \in G} Hom_{\Lambda-gr}(P[g], P(i)[e]), P \text{ is proj, } f \text{ is not epi}} Im(f) \cdot$$

Then radP(i) is gradable. This finishes the proof.

Throughout this note, we assume that the group G is a finite group. Let S be the set of simple Λ - modules (we pick exactly only one from each isomorphism class), and we fix an ordering on S i.e. $S = \{S(1), \dots, S(n)\}$. We now define the simple $\Lambda \# G^*$ - modules. For $(g, \lambda) \in G \times S$, let $e_{(g,\lambda)}$ be the idempotent of $\Lambda \# G^*$ whose (g,g)-entry is e_{λ} , the others are zero. Then the set $\{e_{(g,\lambda)} \mid (g,\lambda) \in G \times S\}$ is a complete set of orthogonal primitive idempotents. For each primitive idempotent, we get a simple module. So we denote by $G \times S$ the set of non-isomorphic simple $\Lambda \# G^*$ - modules. By the lemma above, we have $G \times S = \bigcup_{g \in G} \{S(g,1), \dots, S(g,n)\}$, where F(S(g,i))=S(i)[g], the suspension image of a graded module S(i). We will define an ordering on this set. We first fix an ordering on set G(without any restriction). Then we define the ordering on $G \times S$ as follows: $(g, \lambda) \leq (h, \lambda_1)$ if and only if $\lambda \leq \lambda_1$ or if $\lambda = \lambda_1$, but $g \leq h$.

Theorem 2. If (Λ, S) is a finite dimensional q.h. G-graded \mathcal{K} -algebra with identity, where $\Lambda = \bigoplus_{g \in G} \Lambda_g$, then $(\Lambda \# G^*, G \times S)$ is a q.h. algebra.

Proof. Let $P(g,\lambda) = \Lambda \# G^* e(g,\lambda)$ be the indecomposable projective $\Lambda \# G^*$ module corresponding to the primitive idempotent $e(g,\lambda)$. It is the projective cover of simple $\Lambda \# G^*$ -module $S(g,\lambda)$. Let $\Delta(g,\lambda)$ denote the maximal factor module of $P(g,\lambda)$ with composition factors of form $S(h,\delta)$, where $(h,\delta) \leq (g,\lambda)$. Then $\Delta(g,\lambda) = \frac{P(g,\lambda)}{U(g,\lambda)}$, where

$$U(g,\lambda) = \Sigma_{f \in \bigcup_{(h,\delta) > (g,\lambda)} \operatorname{Hom}(P(h,\delta),P(g,\lambda))} \quad Im(f) = N_1 + N_2 ,$$

where

$$N_1 = \sum_{f \in \bigcup_{\delta > \lambda} Hom(P(h,\delta), P(g,\lambda))} Im(f), \ N_2 = \sum_{f \in \bigcup_{(h,\lambda) > (g,\lambda)} Hom(P(h,\lambda), P(g,\lambda))} Im(f).$$

We know that $\Delta(\lambda) = \frac{P(\lambda)}{U(\lambda)}$, where $U(\lambda) = \sum_{f \in \bigcup_{\delta > \lambda} Hom(P(\delta), P(\lambda))} Im(f)$. It is proved in [8] that $f = \sum_{g \in G} f_g$, where f_g is a homomorphism of degree gfrom $P(\delta)$ to $P(\lambda)$ (where $P(\delta)$ and $P(\lambda)$ are viewed as graded modules). So we have the equality

$$\Sigma_{f \in \bigcup_{\delta > \lambda} Hom(P(\delta), P(\lambda))} Im(f) = \Sigma_{f \in \bigcup_{\delta > \lambda, h \in G} Hom_{\Lambda - gr}(P(\delta)[h], P(\lambda)[e])} Im(f).$$

Then $U(\lambda)$ is a graded submodule of $P(\lambda)[e]$. Therefore $\Delta(\lambda)$ is a gradable module. We will prove that $N_1 \supseteq N_2$.

We denote by $Im(Hom_{\Lambda \# G^*}(P(g,k), P(h,k)))$ the sum of image of all homomorphisms from P(g,k) to P(h,k). Then $Im(Hom_{\Lambda \# G^*}((P(g,k), P(h,k))))$

is a submodule of P(h,k) generated by $e_k \Lambda_{hg^{-1}} e_k$. Then $e_k \Lambda_{hg^{-1}} e_k = 0$ or $e_k \Lambda_{hg^{-1}} e_k \subseteq Im(Hom_{\Lambda-gr}(\bigoplus_{j>k,g\in G} P(j)[g], P(k)[h]))$. Otherwise we have that $e_k \Lambda_{hg^{-1}} e_k \neq 0$, and $e_k \Lambda_{hg^{-1}} e_k \nsubseteq Im(Hom_{\Lambda}(\bigoplus_{j>k} P(j), P(k))))$. This is because

$$Im(Hom_{\Lambda-gr}(\bigoplus_{j>k,g\in G} P(j)[g], P(k)[h])) = Im(Hom_{\Lambda}(\bigoplus_{j>k} P(j), P(k))).$$

So we get $[\Delta(k) : S(k)] \geq 2$, contradicting the fact that Λ is a q. h. algebra. Then $F(\Delta(g,k)) = \Delta(k)[g]$, and $End_{\Lambda\#G^*}(\Delta(g,k)) \cong End_{\Lambda-gr}(\Delta(k)[g])$ $\cong END_{\Lambda}(\Delta(k))_e$, the e-component of $END_{\Lambda}(\Delta(k)) = End_{\Lambda}(\Delta(k))[8]$, the later being a division ring, where $END_{\Lambda}(\Delta(k)) = \bigoplus_{g \in G} End_{\Lambda}(\Delta(k))_g$, and $End_{\Lambda}(\Delta(k))_g$ is the additive subgroup of $End_{\Lambda}(\Delta(k))$ consisting of homomorphisms of degree g from $\Delta(k)$ to itself. So $End_{\Lambda\#G^*}(\Delta(g,k))$ is a division ring. We can get a $\mathcal{F}(_{\Lambda\#G^*}\Delta)$ -filtration of P(g,k) from the $\mathcal{F}(_{\Lambda}\Delta)$ -filtration of P(k). Therefore $\Lambda\#G^*$ is a q.h. algebra with respect to the ordering $G \times S$. This finishes the proof.

Example. Let $\Lambda : 1 \xrightarrow{\longrightarrow} 2$, $\alpha\beta = 0$. Then Λ is a q.h.algebra with β

respect to the natural ordering. Let $\Lambda_{\overline{0}} = \mathcal{K}e_1 + \mathcal{K}e_2$, $\Lambda_{\overline{1}} = \mathcal{K}\alpha + \mathcal{K}\beta$, $\Lambda_{\overline{2}} = \mathcal{K}\beta\alpha$. Then Λ is a Z_3 -graded algebra. The smash product $\Lambda \# Z_3^*$ is as following,

It is a q.h. algebra with respect to the natural ordering.

We have mentioned above that there is a functor $F : \Lambda \# G^* - mod \longrightarrow \Lambda - gr$. In the following, we will give some relations between the two categories of Δ - good modules of the two algebras. We will call that a G-graded algebra Λ is a G-graded algebra with property P if $M[g] \ncong M$ for each indecomposable module in $\Lambda - mod$, and $g \neq e$. For example all Z-graded algebras have property P, the algebra in the example above has also the property P.

Proposition 3. Let Λ be a G-graded algebra with property P, $M \in \Lambda - gr$, $\overline{M} \in \Lambda \# G^* - mod$, with $F(\overline{M}) = M$. Then M is indecomposable in $\Lambda - mod$ if and only if \overline{M} is indecomposable in $\Lambda \# G^* - mod$.

Proof. The necessity is obvious. We prove the sufficiency. $End_{\Lambda\#G^*}\overline{M} \cong End_{\Lambda-gr}M$ is the initial ring of locally G-graded ring $End_{\Lambda}M$. We prove that $(End_{\Lambda}M)_g \cdot (End_{\Lambda}M)_{q^{-1}} \subseteq rad(End_{\Lambda-gr}M)$, for all $g \neq e$. Otherwise, we

have $f_i \in (End_{\Lambda}M)_g$, $h_i \in (End_{\Lambda}M)_{g^{-1}}$, such that $\sum_{i=1}^n f_i h_i = 1$. This implies that $M \cong M[g]$ by Krull-Schimdt theorem and the fact that M is indecomposable, contradicting the property P. So we have that $rad(End_{\Lambda}M) = rad(End_{\Lambda-gr}) + \sum_{g \neq e} (End_{\Lambda}M)_g$, and $End_{\Lambda}M$ is a local ring. This finishes the proof.

Proposition 4. Let Λ be a q.h. G-graded algebra. Then $F(\mathcal{F}(\Lambda \# G^* \Delta)) \subseteq \mathcal{F}(\Lambda \Delta)$. If $M \in \Lambda - gr, M \in \mathcal{F}(\Lambda \Delta)$, then there is a module $\overline{M} \in \mathcal{F}(\Lambda \# G^* \Delta)$ such that $F(\overline{M}) = M$.

Proof. The first assertion follows from the fact that the Δ - filtration of $X \in \mathcal{F}(\Lambda \# G^* \Delta)$ is preserved by F and yields a Δ -filtration of F(X)in mod- Λ . So we prove the second assertion. Let $M \in \Lambda - gr$, $M \in \mathcal{F}(\Lambda \Delta)$. Let $f : P(i) \longrightarrow M$ be a homomorphism. Then $f = \Sigma_{\sigma} f_{\sigma}$, where f_{σ} is a homomorphism of degree σ . Then $Im(f) \subseteq \Sigma_{\sigma} Im(f_{\sigma})$. So $\Sigma_{f \in Hom(P(i),M)} Im(f) = \Sigma_{f \in \bigcup_{g \in G} Hom_{gr}(P(i)[g],M)} Im(f)$. It follows that if $M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_n = 0$ is a $\Lambda \Delta$ -filtration, hence all M_i are graded submodule of M. If we denote $F^{-1}(M)$ by \overline{M} , then $\overline{M} \in \mathcal{F}(\Lambda \# G^* \Delta)$. The proof is finished.

For a q.h. algebra, there is a (uniquely defined) basic module T which is direct sum of all non-isomorphic injective objects in $\mathcal{F}(\Lambda \Delta)$. This module is called the characteristic module of $\Lambda[10]$.

Theorem 5 Let $(\Lambda = \bigoplus_{g \in G} \Lambda_g, S)$ is a finite dimensional q.h. G-graded \mathcal{K} -algebra with property P. Then the chacteristic modules $_{\Lambda \# G^*}T = \bigoplus_{(i,g)\in S\times G} T(i,g)$, such that F(T(i,g)) = F(T(i,e))[g], and $\bigoplus_{i\in S} F(T(i,e))$ is the characteristic module for Λ .

Proof. Let $_{\Lambda \# G^*}T = \bigoplus_{(i,g)\in S\times G} T(i,g)$ be the characteristic module for $\Lambda \# G^*$. Then $_{\Lambda \# G^*}T \in \mathcal{F}(_{\Lambda \# G^*}\Delta) \bigcap \mathcal{F}(_{\Lambda \# G^*}\nabla)$. We have $F(T(i,g)) \in \mathcal{F}(_{\Lambda}\Delta)$, and $F(T(i,g)) \in \mathcal{F}(_{\Lambda}\nabla)$ by duality. So $\bigoplus_{i\in S} F(T(i,e))$ is a characteristic module for Λ , by proposition 4.

Acknowledgment: I would like to thank Prof. C. M. Ringel and Prof. Shaoxue Liu for help and encouragment, to thank Dr. B. M. Deng for discussion and suggestion, I also would like to thank the referee for his(her) useful remarks. Finally I am grateful to SFB-343 and Volkswagen Foundation for support.

References

- Beattie, M. A generalization of the smash product of a graded ring. J. Pure Appl. Algebra 52. no.3 (1988), 219–226.
- [2] Cline, E.; Parshall, B. J.; and Scott, L. L. Finite dimensional algebras and highest weight categories. J. Reine Angew. Math. 391 (1988), 85-99

- [3] Cohen, M.; Montgomery, S. Group-graded rings, smash products, and group actions. Trans. Amer. Math. Soc. 282, no.1 (1984), 237–258.
- [4] Dlab, V.; Ringel, C. M. Auslander algebras as quasi-hereditary algebra.J.London Math.Soc. (2)39 (1989),457-466.
- [5] Gordon, R.; Green, E. L. Representation theory of graded Artin algebras. J. Algebra 76 no.1 (1982), 138–152.
- [6] Green, E. L. Graphs with relations, coverings and group-graded algebras. Trans. Amer. Math. Soc. 279 no.1 (1983), 297–310.
- [7] Liu, Shao Xue; Oystaeyen, Van. F. Group graded rings, smash products and additive categories. Perspectives in ring theory (Antwerp, 1987), 299–310, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 233, Kluwer Acad. Publ., Dordrecht, (1988).
- [8] Năstăsescu, C.; Oystaeyen, Van. F. Graded ring theory. North-Holland Mathematical Library, 28. North-Holland Publishing Co., Amsterdam-New York, 1982.
- [9] Parshall, B. J. Finite-dimensional algebras and algebraic groups. Classical groups and related topics (Beijing, 1987), 97–114, Contemp. Math., 82, Amer. Math. Soc., Providence.
- [10] Ringel, C. M. The category of modules with a good filtration over a quasi-hereditary algebra has almost split sequences. Math. Z. 208 (1991), 209-223.
- [11] Ringel, C. M. The category of good modules over a quasi-hereditary algebra. Proceedings of the Sixth International Conference on Representations of Algebras (Ottawa, ON, 1992), 17 pp., Carleton-Ottawa Math. Lecture Note Ser., 14, Carleton Univ., Ottawa, ON, 1992.
- [12] Ringel,C. M. Tame algebras and integral quadratic form. LNM 1099, Berlin-Heidelberg-New York 1984
- [13] Xi, Chang Chang. Endomorphism algebras of $\mathcal{F}(\Delta)$ over quasihereditary algebras. J. Algebra 175, no.3 (1995), 966–978.