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Abstract

A notion of mutation of subcategories in a right triangulated category is defined
in this paper. When (Z,Z) is a D−mutation pair in a right triangulated category
C, the quotient category Z/D carries naturally a right triangulated structure. More-
over, if the right triangulated category satisfies some reasonable conditions, then the
right triangulated quotient category Z/D becomes a triangulated category. When
C is triangulated, our result unifies the constructions of the quotient triangulated
categories by Iyama-Yoshino and by Jørgensen respectively.
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1 Introduction

Triangulated categories are important structure in algebra and geometry. There are two
major ways to produce triangulated categories: forming homotopy or derived categories
of abelian categories; and forming the stable category of Frobenius categories [H] [BR]
[ASS] [N].
Among the surprises produced by the recent study on cluster algebras and cluster tilt-
ing theory is the possibility to define the notion of mutation in a triangulated category
by Iyama-Yoshino [IY], which is a generalization of mutation of cluster tilting objects
in cluster categories [BMRRT][KR][KZ]. The latter models the mutation of clusters of
acyclic cluster algebras [FZ, K1, K2]. As one of main results in [IY], Iyama and Yoshino
proved that if D ⊆ Z are subcategories of a triangulated category C, and if (Z,Z) is
a D−mutation pair, where D is rigid, i.e. Ext1(D,D) = 0, then the quotient category
Z/D is a triangulated category. Soon later, Jørgensen [J] gave a similar construction
of triangulated category by quotient category in another manner. He proved that if X
is a functorially finite subcategory of a triangulated category C with Auslander-Reiten
translate τ , and if X satisfies the equation τX = X , then the quotient category C/X is
a triangulated category. Recently the authors define the mutation of torsion pairs in a
triangulated category and give its geometric interpretation in [ZZ].
The aim of the paper is to unify these two constructions of the quotient triangulated
categories by Iyama-Yoshino in [IY] and by Jørgensen in [J] respectively. We define
the notion of D−mutation without the assumption that D is rigid (compare [IY]). This
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generalizes the notion of D−mutation defined in [IY] where D is assumed rigid. If D
satisfies the condition of Theorem 2.3 in [J], i.e. D is a functorially finite subcategory of a
triangulated category C which satisfies the equation τX = X , then (C, C) is a D−mutation
in our sense. Finally we prove that if D ⊆ Z are subcategories of a triangulated category
C, and (Z,Z) is a D−mutation pair, then the quotient category Z/D is a triangulated
category.

Actually, our setting is right triangulated categories which were defined and studied by
Beligiannis, Assem and N.Marmaridis in [AB], [ABM].
The paper is organized as follows: In Section 2, we recall the definition of right trian-
gulated category from [ABM], and define the notion of D−mutation pair in it. We give
some basic properties of right triangulated category and of its quotient categories which
are needed in the proof of our main theorem. In Section 3, we state and prove the main
results of this paper.

2 Right triangulated category

Throughout the paper, all the subcategories of a category are full subcategories and closed
under isomorphisms. We recall some basics on right triangulated categories from [AB],
[ABM].

Definition 2.1. Let C be an additive category and T an additive endofunctor of C. A
sextuple (A,B, C, f, g, h) in C is given by objects A,B, C ∈ C and morphisms f : A → B,
g : B → C and h : C → TA. A more suggestive notation of sextuple is

A
f→ B

g→ C
h→ TA.

A morphism from sextuples (A,B, C, f, g, h) to (A′, B′, C ′, f ′, g′, h′) is a triple (a, b, c) of
morphisms such that the following diagram commutes:

A
f−−−−→ B

g−−−−→ C
h−−−−→ TAya

yb

yc

yTa

A′ f ′−−−−→ B′ g′−−−−→ C ′ h′−−−−→ TA′.

If in addition a, b and c are isomorphisms in C, the morphism is then called an isomor-
phism of sextuples.

A class
∑

of sextuples in C is called a right triangulation of C if the following conditions
TR(0)− TR(5) are satisfied. The elements of

∑
are then called right triangles in C, and

the tripe (C, T,
∑

) is called a right triangulated category, or simply C is called a right
triangulated category. The functor T is called the shift functor of the right triangulated
category C.
Thus if T : C → C is an equivalence, the right triangulated category C is a triangulated
category. In this case, right triangles in C are called triangles [H].
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TR(0).
∑

is closed under isomorphisms.
TR(1). For any A ∈ C,

0 0→ A
1→ A

0→ 0

is a right triangle.
TR(2). Any morphism f : A → B in C can be extended to a right triangle

A
f→ B

g→ C
h→ TA.

TR(3). If

A
f→ B

g→ C
h→ TA

is a right triangle, then
B

g→ C
h→ TA

−Tf→ TB

is a right triangle.
TR(4). Given a commutative diagram where the rows are right triangles as follow:

A
f→ B

g→ C
h→ TA

↓ a ↓ b ↓ Ta

A′ f ′→ B′ g′→ C ′ h′→ TA′,

there exists a morphism (a, b, c) from the first right triangle to the second.

TR(5). (Octahedral axiom) Consider right triangles X
a→ Y

b→ Z
c→ TX, Y

d→ U
e→ V

f→
TY and X

da→ U
g→ W

h→ TX. Then there exist morphisms l : Z → W and i : W → V
such that the following diagrams commute and the third column in first diagram is a
right triangle.

X
a→ Y

b→ Z
c→ TX

‖ ↓ d ↓ l ‖
X

da→ U
g→ W

h→ TX
↓ e ↓ i
V = V
↓ f ↓
TY

Tb→ TZ

X
da−−−−→ U

g−−−−→ W
h−−−−→ TXya

y1

yi

yTa

Y
d−−−−→ U

e−−−−→ V
f−−−−→ TY

Proposition 2.2. Let C be a right triangulated category, A
f→ B

g→ C
h→ TA be a right

triangle and E an object in C. Then we have the following long exact sequence:

HomC(A,E)
◦f← HomC(B,E)

◦g← HomC(C, E) ◦h← HomC(TA, E)← · ··
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Proof. It is enough to show that

Hom(A,E)
◦f← Hom(B,E)

◦g← Hom(C, E)

is exact. By TR(1),TR(3) and TR(4), we obtain that the following commutative diagrams
of right triangles:

A
1−−−−→ A

0−−−−→ 0 0−−−−→ TAy1

yf

y0

y1

A
f−−−−→ B

g−−−−→ C
h−−−−→ TA

Hence gf = 0, i.e. im(◦g) ⊆ ker(◦f). If we have if = 0, i ∈ HomC(B,E), by TR(1), we
obtain that the following commutative diagrams of right triangles:

A
f→ B

g→ C
h→ TA

↓ 0 ↓ i ↓ 0
0 0→ E

1→ E
0→ 0

By TR(4), there exists j : C → E such that i = jg, i.e. ker(◦f) ⊆ im(◦g). Then
ker(◦f) = im(◦g).

Definition 2.3. A subcategory Z of a right triangulated category C is called extension-
closed if for any right triangle A

f→ B
g→ C

h→ TA with A,C ∈ Z, then we get B ∈ Z.

Definition 2.4. Let D be a subcategory of a right triangulated category C. A morphism
f : A → B in C is called D − epic, if for any D ∈ D, we have that

HomC(D, A)
f◦→ HomC(D, B) → 0

is exact. Dually, a morphism f : A → B in C is called D −monic, if for any D ∈ D,

HomC(B,D)
◦f→ HomC(A,D) → 0

is exact.

Definition 2.5. Let D be a subcategory of a right triangulated category C. A morphism
f : A → B in C is called a right D − approximation of B if A ∈ D and f is a D − epic.
Dually, a morphism f : A → B in C is called a left D − approximation of A if B ∈ D
and f is a D −monic.

Now we assume that a right triangulated category C is Krull-Schmidt, i.e. any object is
isomorphic to a finite direct sum of objects whose endomorphism rings are local. When
we say that D is a subcategory of C, we always mean that D is full and is closed under
isomorphisms, direct sums and direct summands.

The notion of D−mutation of subcategories was defined in [IY] for a rigid subcate-
gory D. This notion generalizes the mutation of cluster tilting objects in cluster cat-
egories[BMRRT] which was motivated by modeling the mutation of clusters of cluster
algebras [FZ]. In the following we recall the notion of D−mutation of subcategories from
[IY], but we don’t assume that D is rigid here.
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Definition 2.6. Let X ,Y,D be subcategories of a right triangulated category C, and
assume D ⊆ X , and D ⊆ Y. The subcategory µ−1(X ;D) is defined as the subcategory
consisting of objects Y ∈ C such that Y ∈ D or there exists a right triangle

X
f→ D

g→ Y
h→ TX,

where X ∈ X , D ∈ D, f is a left D−approximation and g is a right D−approximation.
Dually, for Y, the subcategory µ(Y;D) is defined as the subcategory consisting of objects
X ∈ C such that X ∈ D or there exists a right triangle

X
f→ D

g→ Y
h→ TX,

where Y ∈ Y, D ∈ D, f is a left D−approximation and g is a right D−approximation.
A pair (X ,Y) of subcategories of C is called a D −mutation pair if µ−1(X ;D) = Y and
µ(Y;D) = X .

Definition 2.7. Let D be a subcategory of a right triangulated category C. We de-
note by [D](X, Y ) the subgroup of HomC(X, Y ) consisting of morphisms which factor
through an object in D. We say that D is factor-through-epic if for any morphism
f ∈ [TnD](TX, TY ) with n > 0, there exists a morphism f ′ ∈ [Tn−1D](X, Y ) such
that Tf ′ = f .

Remark 2.8. The zero subcategory D= 0 is factor-through-epic. Another typical case is
that: when C is a triangulated category, then any subcategory D is factor-through-epic.

Lemma 2.9. For any two objects A,B of a right triangulated category C,

A
iA→ A⊕B

pB→ B
0→ TA

is a right triangle, where iA is a section and pB is a retraction.

Proof. By TR(2), we can extend the section A
iA→ A⊕B into a right triangle:

(∗) : A
iA→ A⊕B

p→ C
c→ TA.

By TR(1), TR(3) and TR(4), the following diagram where the rows are right triangles
commutes:

A
iA−−−−→ A⊕B

p−−−−→ C
c−−−−→ TAy1

ypA

y0

y1

A
1−−−−→ A

0−−−−→ 0 0−−−−→ TA

It follows that c = 0. Since pB◦iA= 0, by Prop 2.2, there exists a morphism f : C → B
such that pB= fp. From the following diagram:

B
f← C

↓ iB ‖
A

iA→ A⊕B
p→ C

0→ TA
↓ pB ‖
B

f← C

,
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we know that (1C − p ◦ iB ◦ f) ◦ p = p ◦ (1A⊕B − iB ◦ f ◦ p) = p ◦ iA ◦ pA = 0. By Prop 2.2,
1C−p◦ iB ◦f factors through C

0→ TA, hence 1C−p◦ iB ◦f = 0, and 1C = p◦ iB ◦f . We
also have f ◦ (p ◦ iB) = (f ◦ p) ◦ iB = 1B. Then f is an isomorphism. Thus the sextuple

A
iA→ A⊕B

pB→ B
0→ TA is isomorphic to the right triangle (∗) under (1A, 1A⊕B, f). Hence

it is a right triangle.

Assumption 2.10. From now on to the end of the paper, we assume that C is a right
triangulated category and satisfies: If B

g→ C
h→ TA

−Tf→ TB is a right triangle, then
A

f→ B
g→ C

h→ TA is a right triangle.

Lemma 2.11. Let C be a right triangulated category satisfying Assumption 2.10. Then
the shift functor T is faithful:

Proof. By Lemma 2.9, for any objects A and B, there exists a right triangle:

B
iB→ B ⊕ TA

pTA→ TA
0→ TB.

For any morphism f : A → B, if Tf = 0, by the Assumption 2.10, we have the right
triangle

A
f→ B

iB→ B ⊕ TA
pTA→ TA.

By Proposition 2.2, iBf = 0, but iB is a monomorphism, thus f = 0.

Remark 2.12. Triangulated categories satisfy the Assumption 2.10. There are right
triangulated categories satisfying the assumption, see Example 4 in Section 3.5.

Proposition 2.13. Let (a, b, c) be a morphism of right triangles in a right triangulated
category C:

A
f−−−−→ B

g−−−−→ C
h−−−−→ TAya

yb

yc

yTa

A′ f ′−−−−→ B′ g′−−−−→ C ′ h′−−−−→ TA′.
If a and b are isomorphisms, so is c.

Proof. By applying the cohomological functor HomC(−, X) to the commutative diagram
above, we obtain the following commutative diagram which has exact rows:

HomC(TB,X) −−−−→ HomC(TA, X) −−−−→ HomC(C, X) −−−−→ HomC(B,X) −−−−→ HomC(A,X)yHomC(Tb,X)

yHomC(Ta,X)

yHomC(c,X)

yHomC(b,X)

yHomC(a,X)

HomC(TB′, X) −−−−→ HomC(TA′, X) −−−−→ HomC(C ′, X) −−−−→ HomC(B′, X) −−−−→ HomC(A′, X)

By Snake-Lemma, HomC(c,X) : HomC(C,X) → HomC(C ′, X) is an isomorphism for any
X ∈ C, hence HomC(c,−) : HomC(C ′,−) → HomC(C,−) is a functorial isomorphism.
By Yoneda Lemma, c is an isomorphism.
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3 Quotient categories of a right triangulated category

3.1 Basics on quotient categories

Definition 3.1. Let D ⊂ Z be subcategories of a category C. We denote by Z/D the cate-
gory whose objects are objects of Z and whose morphisms are elements of HomZ(X, Y )/[D](X, Y )
for X, Y ∈ Z. Such category is called the quotient category of Z by D. For any mor-
phism f : X → Y in Z, we denote by f the image of f under the natural quotient functor
Z → Z/D.

Lemma 3.2. Let D⊆ Z be subcategories of a right triangulated category C and D be
factor-through-epic. Consider the following commutative diagram:

M
α−−−−→ D

β−−−−→ S
γ−−−−→ TMyx

yy

yz

yTx

X
f−−−−→ Y

g−−−−→ Z
h−−−−→ TX,

where rows are right triangles, D ∈ D and g is a D − epic. If z = 0 in the quotient
category Z/D, then x = 0.

Proof. z = 0 means that z factors through an object D′ ∈ D. Since g is a D − epic, we
have the following commutative diagram:

D′ 1→ D′ a← S
↓ c ↓ b ↓ z

Y
g→ Z

1→ Z.

Hence z = ba = gca. Then Tx ◦ γ = hz = hgca = 0. By Proposition 2.2, there exists
ν : TD → TX which makes the diagram

TM
−Tα−−−−→ TD

−Tβ−−−−→ TS
−Tγ−−−−→ T 2MyTx

yν

y0

yT 2x

TX
1−−−−→ TX

0−−−−→ 0 0−−−−→ T 2X

commutative. Since D is factor-through-epic, there exists ν ′ : D → X such that ν = Tν ′.
Hence Tx = −Tν ′Tα, which forces x = −ν ′α, hence x = 0.

Lemma 3.3. Let D be a subcategory of a right triangulated category C which is factor-
through-epic. Consider the right triangle:

A′ f ′−−−−→ D
g′−−−−→ C ′ h′−−−−→ TA′

where D ∈ D. If h′ ◦ c = 0, for c : C → C ′, then we can find d ∈ HomC(C, D) such that
c = g′d.

7



Proof. Since h′ ◦ c = 0, there exists a commutative diagram:

C
0−−−−→ 0 0−−−−→ TC

−1−−−−→ TCyc

y0

yd1

yTc

C ′ h′−−−−→ TA′ −Tf ′−−−−→ TD
−Tg′−−−−→ TC ′,

where the rows are right triangles, d1 exists by (TR4). Since D is factor-through-epic,
there is a morphism d ∈ HomC(C, D) such that d1 = Td. Hence Tc = Tg′Td = T (g′d).
Then c = g′d by Lemma 2.11.

Lemma 3.4. Let D ⊂ Z be subcategories of a right triangulated category C and D be
factor-through-epic. Consider the following commutative diagram:

A
f−−−−→ B

g−−−−→ C
h−−−−→ TAya

yb

yc

yTa

A′ f ′−−−−→ D
g′−−−−→ C ′ h′−−−−→ TA′,

where the rows are right triangles, D ∈ D and f a left D−monic. If a = 0 in the quotient
category Z/D, then c = 0.

Proof. By the condition a = 0, we have that a factors through an object D1 ∈ D. Since
f is a left D−monic, we have the following commutative diagram:

A
1→ A

a→ A′

↓ f ↓ d1 ↓ 1

B
d→ D1

b→ A′.

Hence a = bd1f , and h′c = Ta ◦ h = T (bd1f)h = T (bd1)T (f)h = 0. By Lemma 3.3, c
factors through D, so we get c = 0.

3.2 Right triangles on the quotient category

In this subsection, C denotes a right triangulated category satisfying Assumption 2.10.
Assume that D⊆ Z are subcategories of C, D is factor-through-epic, Z is extension-closed
and satisfies Z = µ(Z;D). Then for any object M ∈ Z, there exists a right triangle

M
αM→ DM

βM→ σM
γM→ TM

with σM ∈ Z and DM ∈ D, and moreover αM is a left D−approximation and βM is a
right D−approximation.
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Definition 3.5. Let M
µ→ N

γ→ P
ϕ→ TM be a right triangle in C, where µ is D−monic

and M, N, P ∈ Z. Then there exists a commutative diagram where the rows are right
triangles:

M
µ−−−−→ N

γ−−−−→ P
ϕ−−−−→ TMy1

yn

yπ

y1

M
αM−−−−→ DM

βM−−−−→ σM
γM−−−−→ TM.

Then we have the following sextuple in the quotient category Z/D:

(∗) : M
µ→ N

γ→ P
π→ σM

We define the right triangles in Z/D as the sextuples which are isomorphic to (∗).
Remark 3.6. It is easy to prove that σM is unique up to isomorphism in the quotient
category Z/D. So for any M ∈ Z, we fix a right triangle

M
αM→ DM

βM→ σM
γM→ TM

In particular, for any M ∈ D, we fix a right triangle

M
1→ M

0→ 0 0→ TM.

For any morphism µ ∈ HomZ(M, N), where M, N ∈ Z, there exist g and µ′ which make
the following diagram commutative.

M
αM−−−−→ DM

βM−−−−→ σM
γM−−−−→ TMyµ

yg

yµ′
yTµ

N
αN−−−−→ DN

βN−−−−→ σN
γN−−−−→ TN.

We define an endofunctor σ : Z/D → Z/D as follows: σ : M 7→ σ(M), µ 7→ µ′.

Proposition 3.7. σ : Z/D → Z/D is an additive functor.

Proof. One can easily check that σ satisfies the definition of the additive functor. We
only prove that σ is well-defined. Now assume µ, µ1 ∈ HomZ(M, N), µ = µ1. Then we
also have the commutative diagram where the rows are right triangles (compare to the
commutative diagram before the proposition):

M
αM−−−−→ DM

βM−−−−→ σM
γM−−−−→ TMyµ1

yg′
yµ1

′
yTµ1

N
αN−−−−→ DN

βN−−−−→ σN
γN−−−−→ TN.

Since µ− µ1 = 0, by Lemma 3.4, we have that µ′ = µ′1
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Lemma 3.8. Assume that we have a commutative diagram where the rows are right
triangles in C:

M
µ−−−−→ N

γ−−−−→ P
ϕ−−−−→ TMyf

yg

yh

yTf

M ′ µ′−−−−→ N ′ γ′−−−−→ P ′ ϕ′−−−−→ TM ′,

where M, N, P,M ′, N ′, P ′ ∈ Z and µ and µ′ are D−monic. Then we have the following
commutative diagram in Z/D :

M
µ−−−−→ N

γ−−−−→ P
π−−−−→ σMyf

yg

yh

yσ(f)

M ′ µ′−−−−→ N ′ γ′−−−−→ P ′ π′−−−−→ σM ′

Proof. Consider the following commutative diagrams where the rows are right triangles
in C, and f ′ = σ(f):

M ′ µ′−−−−→ N ′ γ′−−−−→ P ′ ϕ′−−−−→ TM ′
y1

yn′
yπ′

y

M ′ αM′−−−−→ DM ′
βM′−−−−→ σM ′ γM′−−−−→ TM ′

and
M

αM−−−−→ DM
βM−−−−→ σM

γM−−−−→ TMyf

y
yf ′

yTf

M ′ αM′−−−−→ DM ′
βM′−−−−→ σM ′ γM′−−−−→ TM ′.

We have that γM ′(f ′π − π′h) = Tf ◦ γM ◦ π − ϕ′h = Tf ◦ ϕ − ϕ′h = 0. It follows from
Lemma 3.3 that f ′π = π′h. Then the following diagram commutes

M
µ−−−−→ N

γ−−−−→ P
π−−−−→ σMyf

yg

yh

yσ(f)

M ′ µ′−−−−→ N ′ γ′−−−−→ P ′ π′−−−−→ σM ′

3.3 Main theorem

Theorem 3.9. Let C be a right triangulated category satisfying Assumption 2.10. As-
sume that D⊆ Z are subcategories of C, D is factor-through-epic, Z is extension-closed
and satisfies Z = µ(Z;D). Then the quotient category Z/D forms a right triangulated
category with the additive functor σ and the right triangles defined in Def 3.5.
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Proof. We will check that the right triangles in Z/D defined in Definition 3.5 satisfies the
axioms of right triangulated categories (see Definition 2.1). It follows from the definition
of right triangles in Z/D that TR(0) is satisfied.
For TR(1) : The commutative diagram

0 0−−−−→ M
1−−−−→ M

0−−−−→ 0y
y

y
y

0 0−−−−→ 0 0−−−−→ 0 0−−−−→ 0

shows that 0 0→ M
1→ M

0→ 0 is a right triangle.
For TR(2) : Let µ : M → N be any morphism in Z/D. We have a morphism µ′ =(

µ
αM

)
:M → N⊕DM which isD−monic, where αM : DM → M is a leftD−approximation.

Suppose that M
µ′→ N ⊕ DM → P ′ → TM is a right triangle in C which contains the

morphism µ′ as a part. It follows from Lemma 2.9 and the octahedral axiom that we
have the following commutative diagram where the first two rows and the second column
are right triangles:

M
µ′→ N ⊕DM

γ′→ P ′ → TM
‖ ↓ pDM

↓ ‖
M

αM→ DM → σM → TM
↓ ↓

TN = TN
↓ −TiN ↓

TN ⊕ TDM
Tγ′→ TP ′

It also follows the third column is a right triangle. Then by the Assumption 2.10, N
γ′iN→

P ′ → σM → TN is a right triangle in C, where N, σM ∈ Z. Since Z is extension-closed,
we have that P ′ ∈ Z. Thus there is a right triangle M

µ→ N → P ′ → σ(M) in Z/D
which contains µ as a part.
For TR(3) : Let M

µ→ N
γ→ P

π→ σM be a right triangle in Z/D. We assume that it is
induced by the right triangle in C: M

µ→ N
γ→ P

ϕ→ TM . Considering the commutative
diagram in Def 3.5, we have TαM ◦ ϕ = Tn ◦ Tµ ◦ ϕ = 0. By the octahedral axiom and
Lemma 2.9, we have the following commutative diagrams

P
ϕ→ TM

−Tµ−→ TN
−Tγ−→ TP

‖
y yγ′ ‖

P
0→ TDM


 1

0




−→ TDM ⊕ TP

(
0 1

)

−→ TPy yπ′

TσM = TσMy y
T 2M

−T 2µ→ T 2N
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and

P
0−−−−→ TDM


 1

0




−−−−−→ TDM ⊕ TP

(
0 1

)

−−−−−−−→ TPyϕ

y1

yπ′
yTϕ

TM
−TαM−−−−→ TDM

−TβM−−−−→ TσM
−TγM−−−−→ T 2M.

Write γ′ as γ′ =
(

γ1

γ2

)
. Then−Tγ =

(
0 1

) (
γ1

γ2

)
= γ2. Since γ1 ∈ HomC(TN, TDM )

and D is factor-through-epic, there exists γ1
′ ∈ HomC(N, DM ) such that Tγ1

′ = γ1. Write

π′ as π′ =
(

π1
′ π2

′ )
, then

(
π1
′ π2

′ ) (
1
0

)
= π1

′ = −TβM , −TγM

(
π1
′ π2

′ )

=
( −TγM ◦ π1

′ −TγM ◦ π2
′ )

=
(

0 −TγM ◦ π2
′ )

=
(

0 Tϕ
)
. Then −TγM ◦π2

′ =
Tϕ. Since TγM ◦ (π2

′ + Tπ) = 0, by Lemma 3.3, π2
′ + Tπ factors through TDM , there

exists π2 such that Tπ2 = π2
′+Tπ. By the commutative diagram before Proposition 3.7,

we have the following commutative diagram where the rows are right triangles in C:

σM
−Tµ◦γM−−−−−−→ TN

γ′−−−−→ TDM ⊕ TP
π′−−−−→ TσMy−µ′

y1

y
y−Tµ′

σN
γN−−−−→ TN

−TαN−−−−→ TDN
−TβN−−−−→ TσN

By the Assumption 2.10, we have the following commutative diagram where the rows are
right triangles:

N


 −γ1

′

γ




−−−−−−−−→ DM ⊕ P
(βM ,π−π2)−−−−−−−→ σM

−Tµ◦γM−−−−−−→ TNy1

y
y−µ′

y1

N
αN−−−−→ DN

βN−−−−→ σN
γN−−−−→ TN,

where
( −γ1

′

γ

)
D−monic. Then N

γ→ P
π→ σM

−σ(µ)=−µ′−→ σN is a right triangle.

For TR(4) : Suppose there is a commutative diagram where the rows are right triangles
in Z/D:

A
f→ B

g→ C
h→ σA

(∗) ↓ a ↓ b ↓ σ(a)

A′ f
′
→ B′ g′→ C ′ h

′
→ σA′.

By the definition of right triangles of Z/D in Def 3.5, there exists a(not necessarily
commutative)diagram where the rows are right triangles in C:

A
f→ B

g→ C
h→ TA

(∗∗) ↓ a ↓ b ↓ Ta

A′ f ′→ B′ g′→ C ′ h′→ TA′.
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Since f ′a = bf , the morphism bf − f ′a factors through an object D ∈ D. Since f is
D−monic, we have the following commutative diagram

A
1← A

1→ A
↓ f ↓ α3 ↓ bf − f ′a
B

α1→ D
α2→ B′

Denote α2α1 by s. We have sf = bf − f ′a. After replacing b − s by b in the diagram
(∗∗), whose images in Z/D are the same, we can assume that bf = f ′a. Therefore there
exists a morphism c : C → C ′ such that (a, b, c) is a morphism of right triangles in C. It
follows from Lemma 3.8 that (a, b, c) is a morphism of triangles in (∗).
For TR(5) : Let X

a→ Y
b→ Z

c→ TX, Y
d→ U

e→ V
f→ TY , and X

da→ U
g→ W

h→ TX be
right triangles in Z/D. By the proof for TR(2) above, we may assume that a and d are
D−monic. Then da is also D−monic. Hence we have the following three right triangles

in C: X
a→ Y

b→ Z
c′→ TX, Y

d→ U
e→ V

f ′→ TY , X
da→ U

g→ W
h′→ TX. By octahedral

axiom, we have the following commutative diagrams in C:

X
a→ Y

b→ Z
c′→ TX

‖ ↓ d ↓ l ‖
X

da→ U
g→ W

h′→ TX
↓ e ↓ i
V = V
↓ f ′ ↓
TY

Tb→ TZ

and
X

da−−−−→ U
g−−−−→ W

h′−−−−→ TXya

y1

yi

yTa

Y
d−−−−→ U

e−−−−→ V
f ′−−−−→ TY

We will show that l is D − monic. Let j : Z → D be any morphism, where D ∈ D.
Since d is D − monic, there exists a morphism k : U → D such that kd = jb. Then
kda = jba = 0. By Prop 2.2, there exists a morphism m : W → D such that mg = k.
Now we get mlb = mgd = kd = jb, thus (ml − j)b = 0. Then there exists a morphism
α : TX → D such that ml − j = αc′ = αh′l. Then j = (m− αh′)l. Now by Lemma 3.8,
we have the following commutative diagrams in Z/D where the rows are right triangles:

X
a→ Y

b→ Z
c→ σX

‖ ↓ d ↓ l ‖
X

da→ U
g→ W

h→ σX
↓ e ↓ i
V = V

↓ f ↓
σY

σ(b)→ σZ

13



and
X

da−−−−→ U
g−−−−→ W

h−−−−→ σXya

y1

yi

yσ(a)

Y
d−−−−→ U

e−−−−→ V
f−−−−→ σY

Therefore the quotient category Z/D is a right triangulated category with shift functor
σ.

Corollary 3.10. Assume that C, D and Z satisfy the same conditions as in Theorem
3.9. Let µ ∈ HomZ(M, N) be D−monic, where M, N ∈ Z. If M

µ→ N
γ→ P

ϕ→ TM is a
right triangle in C, then P ∈ Z.

Proof. According to the proof of Theorem 3.9, for any morphism µ ∈ HomZ(M, N),

there exists a right triangle M
µ′→ N ⊕DM → P ′ → TM with µ′ =

(
µ

αM

)
and P ′ ∈ Z.

Suppose M
µ→ N

γ→ P
ϕ→ TM is the right triangle in C containing µ as a part. We have

the following commutative diagrams (compare the Definition 3.5), where the rows are
right triangles in C:

M
µ→ N → P → TM

‖ ↓ n′ ↓ g1 ‖
M

µ′→ N ⊕DM → P ′ → TM
‖ ↓ f ↓ g2 ‖
M

µ→ N → P → TM,

where n′ =
(

1N

n

)
and f =

(
1N 0

)
. Since fn′ = 1N , by Prop 2.13, we have that

g2g1 is an isomorphism. Thus P is a direct summand of P ′. Therefore P ∈ Z.

3.4 Triangulated structure on the quotient category Z/D
Theorem 3.11. Let C be a right triangulated category satisfying Assumption 2.10. As-
sume that D⊆ Z are subcategories of C, D is factor-through-epic, Z is extension-closed
and (Z,Z) is a D−mutation pair. If the restriction of the shift functor T to Z, T |Z :
Z → TZ is full, then the right triangulated category Z/D is a triangulated category.

Proof. By Theorem 3.9, we only need to show that the shift functor σ in Z/D is an
equivalence. Since (Z,Z) is a D−mutation pair, for any object X ∈ Z, we fix a right

triangle in C: ωX
αX→ DX βX

→ X
γX

→ TωX with βX being a right D−approximation and
αX being a left D−approximation. For any morphism f : X → Y , there exist g and h
such that (g, f, h) is a morphism of right triangles (i.e. the following diagram commutes):

DX βX

−−−−→ X
γX

−−−−→ TωX
−TαX−−−−→ TDX

yg

yf

yh

y

DY βY

−−−−→ Y
γY

−−−−→ TωY
−TαY−−−−→ TDY
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By the fullness of the functor T |Z , there exists h′ ∈ HomC(ωX, ωX ′) such that Th′ = h.
Then we have the following commutative diagram:

ωX
αX−−−−→ DX βX

−−−−→ X
γX

−−−−→ TωXyh′
yg

yf

yTh′

ωY
αY−−−−→ DY βY

−−−−→ Y
γY

−−−−→ TωY.

Now we define ω : Z/D → Z/D as a functor which sends X to ωX, sends f to h′. By
using Lemma 3.2, one can prove that ω : Z/D → Z/D is an additive functor in a way
dual to the construction of σ (compare Proposiotion 3.7 and its proof). Then we have
the following commutative diagram in C:

ωX
αX→ DX βX

→ X
γX

→ TωX
‖ ↓ ↓ gX ‖

ωX
αωX→ DωX

βωX→ σωX
γωX→ TωX

‖ ↓ ↓ g′X ‖
ωX

αX→ DX βX

→ X
γX

→ TωX.

It follows from the commutative diagram that γX(1X−g′g) = 0 and γωX(1σωX−gg′) = 0.
By using Lemma 3.3, one can get that gX ◦ gX

′ = 1σωX , gX
′ ◦ gX = 1X . Then X ∼= σωX

in Z/D. For any morphism f : X → Y , we also have the following commutative diagram:

ωX
αωX→ DωX

βωX→ σωX
γωX→ TωX

‖ ↓ ↓ g′X ‖
ωX

αX→ DX βX

→ X
γX

→ TωX
↓ h′ ↓ ↓ f ↓
ωY

αY→ DY βY

→ Y
γY

→ TωY
‖ ↓ ↓ gY ‖

ωY
αωY→ DωY

βωY→ σωY
γωY→ TωY.

Then we get the following commutative diagram

ωX
αωX→ DωX

βωX→ σωX
γωX→ TωX

↓ h′ ↓ ↓ f ′′ ‖
ωY

αωY→ DωY
βωY→ σωY

γωY→ TωY.

where f ′′ = gY ◦ f ◦ g′X . Then we have that f ′′ = σh
′ = σωf in Z/D. We also have the

following commutative diagram in Z/D:

X
gX→ σωX

↓ f ↓ f ′′

Y
gY→ σωY

Since gX and gY are isomorphisms in Z/D, σω is an equivalence. Dually one can show
that ωσ is also an equivalence. This proves σ is an equivalence.
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A direct application of Theorem 3.12 to the special case when C is a triangulated category
is the following result.

Corollary 3.12. Let C be a triangulated category, and (Z,Z) a D−mutation pair. Then
the quotient category Z/D is a triangulated category.

3.5 Examples

Example 1. In [IY], for a rigid subcategory D of a triangulated category C, i.e. D
satisfies HomC(D, TD) = 0, Iyama and Yoshino defined D−mutation pair in C. It is
easy to see that when D is rigid, and (X ,Y) is a D − mutation pair, then (X ,Y) is a
D−mutation pair in the sense of Definition 2.6. It follows from Corollary 3.12 that the
quotient category Z/D is a triangulated category, which is Theorem 4.2 in [IY].

Example 2. Let C be a triangulated category with shift functor T , X ⊆ C is a functorially
finite subcategory. Jørgensen proved in [J] that if C has Serre functor S which satisfies
T−1 ◦ SX = X , then in the triangle M → N → P → TP , M → N is X−monic if and
only if N → P is X−epic. So (C, C) is a X −mutation pair defined in Definition 2.6. It
follows from Corollary 3.12, the quotient category C/D is a triangulated category, which
is the sufficient part of Theorem 3.3 in [J].

Example 3. Let C be a 2−Calabi-Yau triangulated category [KR,IY], and E an rigid
object in C, i.e. Ext1C(E, E) = 0. The quotient category C/addE is a right trian-
gulated category [ABM]. Let X be the subcategory of C consisting of objects X with
HomC(E, X[1]) = 0. It is easy to see that (X ,X ) is an addE-mutation pair in C. Now
passing to the right triangulated quotient category C/addE, we get the quotient subcate-
gory of C/addE, denoted by Z. Then (Z,Z) is a 0−mutation pair in C/addE, hence Z
is a triangulated subcategory in C by Theorem 3.11.

Example 4. Let (B,S) be the exact category defined in [H]. Assume that (B,S) has
enough S-injectives, B is the quotient category B/S [H]. Then according to the theorem
of Chapter 1.2 in [H], B is a right triangulated category.

Claim: If all the S-injectives are also S-projectives (which means that the set of S−injectives
is contained in the set of S−projectives) , then the shift functor in B is fully and faithful.
Moreover the right triangulated category B satisfies the Assumption 2.10.
Proof. We will give a brief proof of this claim:
Note that we will use the notations in [H], just changing ”triangle” into ”right triangle”.
(i)For any morphism f : X → Y in B, there exists a commutative diagram of short exact
sequences

0 0→ X
µ(X)→ I(X)

π(X)→ TX
0→ 0

↓ f ↓ I(f) ↓ f ′

0 0→ Y
µ(Y )→ I(Y )

π(Y )→ TY
0→ 0.

Then f ′ = Tf in B by the definition of T [H]. Suppose f ′ = 0. Then f ′ factors through
some S−injective I. But I is also S−projective, then f ′ factors through I(Y). Let f ′ =
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π(Y )α with α : TX → I(Y ), then π(Y )(I(f)− απ(X)) = 0, which means I(f)− απ(X)
factors through Y. Let I(f) − απ(X) = µ(Y )β, where β : I(X) → Y , then µ(Y )(f −
βµ(X)) = 0. Since µ(Y ) is monic, f = βµ(X), thus f = 0. This proves T is faithful.
(ii)For any morphism f ′ : TX → TY , we have a commutative diagram of short exact
sequences

0 0→ X
µ(X)→ I(X)

π(X)→ TX
0→ 0

↓ f ↓ g ↓ f ′

0 0→ Y
µ(Y )→ I(Y )

π(Y )→ TY
0→ 0,

where the morphism g exists due to that I(X) is S−projective. Now there exists a com-
mutative diagram of short exact sequences

0 0→ X
µ(X)→ I(X)

π(X)→ TX
0→ 0

↓ f ↓ I(f) ↓ f ′′

0 0→ Y
µ(Y )→ I(Y )

π(Y )→ TY
0→ 0

where f ′′ = Tf . By (g−I(f))π(X) = 0, we have that there exists a morphism α : T (X) →
I(Y ) such that g− I(f) = απ(X). Then (f ′− f ′′)π(X) = π(Y )(g− I(f)) = π(Y )απ(X).
Now we get (f ′ − f ′′ − π(Y )α)π(X) = 0. Since π(X) is epic, (f ′ − f ′′ − π(Y )α) = 0.
Then f ′ = f ′′ = Tf . This proves T is full.

(iii)Assume that Y
g→ Z

h→ TX
−Tu→ TY is a right triangle in B. Then we can get the

following commutative diagram:

TX
−Tu−−−−→ TY

−Tv−−−−→ TCu
−Tw−−−−→ T 2Xy1

y1

yl′
y1

TX
−Tu−−−−→ TY

−Tg−−−−→ TZ
−Th−−−−→ T 2X

where the rows are right triangles, and X
u→ Y

v→ Cu
w→ TX is a standard right triangle

in B. By Prop 2.13, l′ is an isomorphism. Let l′k′ = 1TZ and k′l′ = 1TCu. Since T
is full, there exist morphisms l : Cu → Z and k : Z → Cu such that T l = l′, Tk = k′.
Now we get Tkl = T1Cu and T lk = T1Z . Since T is faithful, l is an isomorphism. Then

X
u→ Y

g→ Z
h→ TX is a right triangle in B. This proves that B satisfies the Assumption

2.10.
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