Cluster-tilted algebras and their intermediate coverings

Bin Zhu

Department of Mathematical Sciences
Tsinghua University
100084 Beijing, P. R. China
E-mail: bzhu@math.tsinghua.edu.cn

Abstract

The intermediate coverings of cluster-tilted algebras are constructed from the repetitive cluster categories which are defined in this paper. These repetitive cluster categories are Calabi-Yau triangulated categories with fractional CY-dimension and have also cluster tilting objects. Furthermore we show that the representations of these intermediate coverings of cluster-tilted algebras are induced from the repetitive cluster categories.

Key words. Repetitive cluster categories, cluster-tilted algebras, cluster tilting objects(subcategories), coverings.

Mathematics Subject Classification. 16G20, 16G70.

1 Introduction

Cluster categories defined in [BMRRT], and in [CCS] for type A_n, are the orbit categories $\frac{D^b(H)}{\tau^\mathbb{Z}}$ of derived categories $D^b(H)$ of a hereditary algebra H by the automorphism group generated by $F = \tau^{-1}[1]$, where τ is the Auslander-Reiten translation in $D^b(H)$ and $[1]$ is the shift functor of $D^b(H)$. They are triangulated categories and are Calabi-Yau categories of CY-dimension 2 [K1].

Cluster-tilted algebras defined in [BMRRT][BMR1] are by definition, the endomorphism algebras of cluster tilting objects in the cluster categories of hereditary algebras. Together with cluster categories they provide an algebraic understanding (see [BMRRT] [CK1] [CK2]) of combinatorics of cluster algebras defined and studied by Fomin and Zelevinsky in [FZ]. In this connection, the indecomposable exceptional objects in cluster categories correspond to the cluster variables, and cluster tilting objects(= maximal 1–orthogonal subcategories [I1, I2]) to clusters of corresponding cluster algebras, see [CK1, CK2]. We refer to [K2] for a more recent nice survey on this topic.

It was proved in [KR] that cluster-tilted algebras provide a class of Gorenstein algebras of Gorenstein dimension at most 1, which are important in representation theory of algebras [Rin2]. Since they were introduced, they have been studied by many authors, see for example: [ABS1-3], [BFPPT], [BKL], [BM], [BMR1-2], [CCS], [KR], [KZ], [IY], [Rin2-4], [Zh]....

Now let \mathcal{H} be a hereditary abelian category with tilting objects. The endomorphism category of a tilting object in \mathcal{H} is called a quasi-tilted algebra [HRS]. The class of quasi-tilted algebras consists of tilted algebras and canonical algebras [H2]. From [H2], \mathcal{H} is

1Supported by the NSF of China (Grants 10771112) and partly by TNLIST Cross-discipline Foundation
either derived equivalent to $\text{mod}\, H$ for a hereditary algebra H or to the category $\text{coh}\, P$ of coherent sheaves over a weighted projective line P. The latter is derived equivalent to the module categories of canonical algebras [Rin1]. From such a hereditary abelian category \mathcal{H}, one can also define cluster category $\mathcal{C}(\mathcal{H})$ as the orbit category of $D^b(\mathcal{H})$ by $\tau^{-1}[1]$ [BMRRRT][Zh][BKL]. The cluster tilting objects in such a cluster category $\mathcal{C}(\mathcal{H})$ coincide with tilting objects in \mathcal{H} by [BKL]. For a general hereditary category \mathcal{H}, it was shown that any cluster tilting object is induced from a tilting object of a hereditary abelian category which is derived equivalent to \mathcal{H} [BMRRRT]. The endomorphism algebra of a cluster tilting object in $\mathcal{C}(\mathcal{H})$ is called a cluster-tilted algebra of type \mathcal{H}.

The aim of the note is to show that the coverings of cluster-tilted algebras can be constructed from repetitive cluster categories. Repetitive cluster categories are defined as the orbit categories of the derived categories $D^b(\mathcal{H})$ by the group $< F_m >$ generated by F^m, for any positive integer m. They are triangulated by Keller [K1], which are Calabi-Yau categories with fractional Calabi-Yau dimension. The cluster tilting objects in the repetitive cluster categories are shown to correspond bijectively to ones in the cluster categories; the endomorphism algebras of cluster tilting objects in $D^b(\mathcal{H})/ < F_m >$ are the coverings of the corresponding cluster-tilted algebras. They all share a Galois covering: the endomorphism algebra of the corresponding cluster tilting subcategory in $D^b(\mathcal{H})$.

This note is organized as follows:

In Section 2 we collect basic material on cluster tilting objects and cluster-tilted algebras. We generalize the Assem-Bristle-Schiffler’s characterization [ABS1] of cluster-tilted algebras to the general case: the cluster-tilted algebras of type \mathcal{H}, i.e., we show that the trivial extension algebra $A = B \ltimes Ext^2_B(DB, B)$ is a cluster-tilted algebra of type \mathcal{H} if and only if B is a quasi-tilted algebra.

In Section 3 we first introduce the repetitive cluster categories $\mathcal{C}_{F^m}(\mathcal{H})$, which are triangulated categories and are coverings of the corresponding cluster categories $\mathcal{C}(\mathcal{H})$. We then study cluster tilting theory in these triangulated categories.

2 Basics on cluster-tilted algebras

Let \mathcal{D} be a k–linear triangulated category with finite dimensional Hom-spaces over a field k and with Serre duality. We assume that \mathcal{D} is a Krull-Remak-Schmidt category. Let \mathcal{T} be a full subcategory of \mathcal{D} closed under taking direct summands. The quotient category of
\(\mathcal{D} \) by \(\mathcal{T} \) denoted by \(\mathcal{D}/\mathcal{T} \), is by definition, a category with the same objects as \(\mathcal{D} \) and the space of morphisms from \(X \) to \(Y \) is the quotient of group of morphisms from \(X \) to \(Y \) in \(\mathcal{D} \) by the subgroup consisting of morphisms factor through an object in \(\mathcal{T} \). The quotient \(\mathcal{D}/\mathcal{T} \) is also an additive Krull-Remak-Schmidt category (see for example Lemma 2.1 in [KZ]). For \(X, Y \in \mathcal{D} \), we use \(\text{Hom}(X,Y) \) to denote \(\text{Hom}_\mathcal{D}(X,Y) \) for simplicity, and define that \(\text{Ext}^k(X,Y) := \text{Hom}(X,Y[k]) \). For a subcategory \(\mathcal{T} \), we say that \(\text{Ext}^i(\mathcal{T},\mathcal{T}) = 0 \) provided that \(\text{Ext}^i(X,Y) = 0 \) for any \(X, Y \in \mathcal{T} \). For an object \(T \), \text{add}T denotes the full subcategory consisting of direct summands of direct sum of finitely many copies of \(T \). Throughout the article, the composition of morphisms \(f : M \to N \) and \(g : N \to L \) is denoted by \(fg : M \to L \). For basic references on representation theory of algebras and triangulated categories, we refer [Rin1] and [H1].

Fix a triangulated category \(\mathcal{D} \), and assume that \(\mathcal{T} \) is a functorially finite subcategory of \(\mathcal{D} \) (see for example [AS]).

Definition 2.1.

1. \(\mathcal{T} \) is called rigid, provided \(\text{Ext}^1(\mathcal{T},\mathcal{T}) = 0 \); in particular, an object \(T \) is called rigid provided \(\text{Ext}^1(T,T) = 0 \).
2. \(\mathcal{T} \) is called a cluster tilting subcategory provided \(X \in \mathcal{T} \) if and only if \(\text{Ext}^1(X,\mathcal{T}) = 0 \) and \(X \in \mathcal{T} \) if and only if \(\text{Ext}^1(\mathcal{T},X) = 0 \). An object \(T \) is a cluster tilting object if and only if \(\text{add}T \) is a cluster tilting subcategory.

Remark 2.2.

1. Not all triangulated categories have cluster tilting subcategories, see for example, the example in Section 5 in [KZ].
2. In a module category \(\Lambda - \text{mod} \) of a self-injective algebra \(\Lambda \), \(T \oplus \Lambda \) is a cluster tilting module (=maximal 2−orthogonal module in [I1, I2]) if and only if \(T \) is cluster tilting in \(\Lambda - \text{mod} \).

Remark 2.3.

It was proved in [KZ] that if \(\mathcal{T} \) is contravariantly finite and satisfies the condition that \(X \in \mathcal{T} \) if and only if \(\text{Ext}^1(\mathcal{T},X) = 0 \), then \(\mathcal{T} \) is a cluster tilting subcategory.

For a triangulated category \(\mathcal{D} \) with Serre duality \(\Sigma \), \(\mathcal{D} \) has Auslander-Reiten triangles and \(\Sigma = \tau[1] \), where \(\tau \) is the Auslander-Reiten translation. Denote by \(F = \tau^{-1}[1] \).

Lemma 2.4. Let \(\mathcal{D} \) be a triangulated category with Serre duality \(\Sigma \), and \(\mathcal{T} \) a cluster tilting subcategory of \(\mathcal{D} \). Then \(FT = T \).

Proof. The assertion was proved in [KZ] or [IY].

The following results were proved in [KZ], see also [BMRRT][BMR1][KR][IY].

Theorem 2.5. Let \(T \) be a cluster tilting object of a triangulated category \(\mathcal{D} \), and \(A = \text{End}_\mathcal{D}T \). Then the following hold:
1. (Corollaries 4.4, 4.5 in [KZ]). The functor Hom(T, -) : D → A – mod induces an equivalence D/\text{add}(T[1]) \cong A – mod, and A is a Gorenstein algebra of Gorenstein dimension at most 1.

2. (Proposition 4.8 in [KZ]). Assume that the field k is algebraically closed. If B = End_D T' is the endomorphism algebra of another cluster tilting object T', then A and B have same representation type.

Let T = T_1 ⊕ T' be a cluster tilting object of a triangulated category D, where T_1 is indecomposable object. Let T_1 → E \xrightarrow{f} T_1 → T_1'[1] be the triangle with f a minimal right \text{add}T'–approximation of T_1. It follows from [IY] that T* = T_1 * ⊕ T' is a cluster tilting object and there is a triangle T_1 → E \xrightarrow{g} T_1 → T_1[1] with g being a minimal right \text{add}T'–approximation of T_1'. Let A, B be the endomorphism algebras of cluster tilting objects T, T* respectively. Denote by S_{T_1}, (or S_{T'}) the simple A-module corresponding to T_1 (resp. simple B-module corresponding to T_1'). The following proposition is a generalization of Proposition 2.2 in [KR] and Theorem B in [BMR1].

Proposition 2.6. Let T and T* be as above. Then A – mod/\text{add}S_{T_1} \cong B – mod/\text{add}S_{T'}.

Proof. Denote by G = Hom(T, -). The induced functor \(\overline{G} : D/\text{add}(T[1]) \rightarrow A – \text{mod} \) is an equivalence by Theorem 2.5(1). We consider the composition of the functor \(\overline{G} \) with the quotient functor Q : A – mod → \text{add}(\text{Hom}(T, T_1'[1])^\text{A–mod}) which is denoted by G_1. The functor G_1 is full and dense since \(\overline{G} \) and Q are. Under the equivalence \(\overline{G}, T_1'[1] \) corresponds to Hom(T, T_1'[1]). For any morphism \(\varphi : X \rightarrow Y \) in the category \text{add}(\text{Hom}(T, T_1'[1])) \approx S_{T_1} \) and Hom(T, T_1'[1]) \approx S_{T'} \) (compare Lemma 4.1 in [BMR1]). Then \(A – \text{mod}/\text{add}S_{T_1} \approx B – \text{mod}/\text{add}S_{T'} \). The proof is finished.

From now on, we assume that \(\mathcal{H} \) is a hereditary \(k \)-linear category with finite dimensional Hom-spaces and Ext-spaces. We also assume that \(\mathcal{H} \) has tilting objects. The endomorphism algebra of tilting object \(T \) in \(\mathcal{H} \) is called a quasi-tilted algebra [HRS]. Since \(\mathcal{H} \) has tilting objects, \(D^b(\mathcal{H}) \) has Serre duality [HRS], and has also Auslander-Reiten triangles, the Auslander-Reiten translation is denoted by \(\tau \) [HRS]. Let \(F = \tau^{-1}[1] \) be the automorphism of the bounded derived category \(D^b(\mathcal{H}) \). We call the orbit category \(D^b(\mathcal{H})/\text{< F }> \) the cluster category of type \(\mathcal{H} \), which is denoted by \(\mathcal{C}(\mathcal{H}) \) [BMRRT]. For cluster tilting theory in the cluster category \(\mathcal{C}(\mathcal{H}) \), we refer [BKL][BMRRT][Zh]. The endomorphism algebra \(\text{End}_{\mathcal{C}(\mathcal{H})} T \) of a cluster tilting object \(T \) in \(\mathcal{C}(\mathcal{H}) \) is called a cluster-tilted algebra of type \(\mathcal{H} \). When \(\mathcal{H} \) is the module category over a hereditary algebra \(H = kQ \), we call the corresponding orbit category the cluster category of \(H \) or of \(Q \). In this case the endomorphism algebra of a cluster tilting object is called a cluster-tilted algebra of \(H \) [BM], [BMR1], [Zh], [ABS1-3].
Now we give a characterization of cluster-tilted algebras of type \mathcal{H}, which generalizes some results in [ABS1], [Zh].

Given any finite-dimensional algebra B, from the B–bimodule $\text{Ext}^2(DB, B)$, one can form the trivial extension algebra of B with the bimodule $\text{Ext}^2(DB, B)$: $A = B \ltimes \text{Ext}^2(DB, B)$. It was proved that this trivial extension algebra is a cluster-tilted algebra of H if and only if B is a tilted algebra [ABS1], see also [Zh]. In the following, we generalize the characterization of cluster-tilted algebras to the cluster-tilted algebras of type \mathcal{H}. The proof is exactly the same as the proof in [ABS1], we omit it here.

Proposition 2.7. Let $A = B \ltimes \text{Ext}^2(DB, B)$. Then A is a cluster-tilted algebra of type \mathcal{H} if and only if B is a quasi-tilted algebra, i.e. the endomorphism algebra of a tilting object in \mathcal{H}.

3 Intermediate covers of cluster tilted algebras of type \mathcal{H}

As in the previous section, \mathcal{H} denotes a hereditary k–linear category with finite dimensional Hom-spaces and Ext-spaces. We assume that \mathcal{H} has tilting objects. Since \mathcal{H} has tilting objects, $D^b(\mathcal{H})$ has Serre duality, and also Auslander-Reiten translate τ (AR-translate for short)[HRS]. Let $F = \tau^{-1}[1]$ be the automorphism of the bounded derived category $D^b(\mathcal{H})$. Fix a positive integer m throughout this section. We consider the orbit category $D^b(\mathcal{H})/ < F^m >$, which is by definition a k–linear category whose objects are the same in $D^b(\mathcal{H})$, and whose morphisms are given by:

$$\text{Hom}_{D^b(\mathcal{H})/ < F^m >} (\tilde{X}, \tilde{Y}) = \oplus_{i \in \mathbb{Z}} \text{Hom}_{D^b(\mathcal{H})} (X, (F^m)^i Y).$$

Here X and Y are objects in $D^b(\mathcal{H})$, and \tilde{X} and \tilde{Y} are the corresponding objects in $D^b(\mathcal{H})/ < F^m >$ (although we shall sometimes write such objects simply as X and Y).

Definition 3.1. The orbit category $D^b(\mathcal{H})/ < F^m >$ is called the repetitive cluster category of type \mathcal{H}. We denote it by $\mathcal{C}_{F^m}(\mathcal{H})$.

Remark 3.2. When $m = 1$, we get back to the usual cluster category $\mathcal{C}(\mathcal{H})$, which was introduced by Buan-Marsh-Reineke-Reiten-Todorov in [BMRRT], and also by Caldero-Chapoton-Schiffler in [CCS] for A_n case.

The repetitive cluster categories $\mathcal{C}_{F^m}(\mathcal{H})$ serve as intermediate categories between the cluster categories $\mathcal{C}(\mathcal{H})$ and derived categories $D^b(\mathcal{H})$. Similarly as for the case of cluster categories, for any positive integer m, we have a natural projection functor $\pi_m : D^b(\mathcal{H}) \to \mathcal{C}_{F^m}(\mathcal{H})$. If $m = 1$, the projection functor π_m is simply denoted by π.

Now we define a functor $\rho_m : \mathcal{C}_{F^m}(\mathcal{H}) \to \mathcal{C}(\mathcal{H})$, which sends objects \tilde{X} in $\mathcal{C}_{F^m}(\mathcal{H})$ to objects \tilde{X} in $\mathcal{C}(\mathcal{H})$ and morphisms $f : \tilde{X} \to \tilde{Y}$ in $\mathcal{C}_{F^m}(\mathcal{H})$ to the morphisms $f : \tilde{X} \to \tilde{Y}$ in $\mathcal{C}(\mathcal{H})$.

It is easy to check that $\pi = \rho_m \circ \pi_m$.

One can identify the set $\text{ind}\mathcal{C}(\mathcal{H})$ with the fundamental domain for the action of F on $\text{ind}D^b(\mathcal{H})$ [BMRRT]. Passing to the orbit category $\mathcal{C}_{F^m}(\mathcal{H})$, one can view $\text{ind}\mathcal{C}(\mathcal{H})$ as a (usually not full) subcategory of $\text{ind}\mathcal{C}_{F^m}(\mathcal{H})$.
Proposition 3.3. 1. $\mathcal{C}_{Fm}(\mathcal{H})$ is a triangulated category with Auslander-Reiten triangles and Serre functor $\Sigma = \tau[1]$, where τ is the AR-translate in $\mathcal{C}_{Fm}(\mathcal{H})$, which is induced from AR-translate in $D^b(\mathcal{H})$.

2. The projections $\pi_m : D^b(\mathcal{H}) \to \mathcal{C}_{Fm}(\mathcal{H})$ and $\rho_m : \mathcal{C}_{Fm}(\mathcal{H}) \to \mathcal{C}(\mathcal{H})$ are triangle functors and also covering functors.

3. $\mathcal{C}_{Fm}(\mathcal{H})$ is a fractional Calabi-Yau category of CY-dimension $\frac{2m}{m}$.

4. $\mathcal{C}_{Fm}(\mathcal{H})$ is a Krull-Remak-Schmidt category.

5. $\text{ind}\mathcal{C}_{Fm}(\mathcal{H}) = \bigcup_{i=0}^{m-1}(\text{ind}\mathcal{C}(\mathcal{H}))$.

Proof. 1. It follows from [K1] that $\mathcal{C}_{Fm}(\mathcal{H})$ is a triangulated category. The remaining claims follow from Proposition 1.3 [BMRRT].

2. It is proved in Corollary 1 in Section 8.4 of [K1] that $\pi_m : D^b(\mathcal{H}) \to \mathcal{C}_{Fm}(\mathcal{H})$ is a triangle functor. It is easy to check that $\pi \circ F^m \cong \pi$. By the universal property of the orbit category $D^b(\mathcal{H})/ < F^m > [K1]$, we obtain a triangle functor $\rho : \mathcal{C}_{Fm}(\mathcal{H}) \to \mathcal{C}(\mathcal{H})$ satisfying that $\rho \pi_m = \pi$, which turns out to be the functor ρ_m.

3. The Serre functor $\Sigma = \tau[1]$ in $\mathcal{C}_{Fm}(\mathcal{H})$ satisfies that $\Sigma^m = \tau^m[m] = F^m[2m] \cong [2m]$. Therefore $\mathcal{C}_{Fm}(\mathcal{H})$ is a fractional Calabi-Yau category with CY-dimension $\frac{2m}{m}$.

4. The proof given in Proposition 1.6 [BMRRT] for $m = 1$, can be modified to work for any positive value of m.

We note that if the hereditary abelian category \mathcal{H} is equivalent to the module category of a finite dimensional hereditary algebra H, then the indecomposable objects in $\mathcal{C}(\mathcal{H})$ are of form \tilde{M} or of form $P[1]$, where M is an indecomposable H-module and $P[1]$ is the first shift of an indecomposable projective H-module P. If the hereditary abelian category \mathcal{H} is not equivalent to the module category of a finite dimensional hereditary algebra H, then the indecomposable objects in $\mathcal{C}(\mathcal{H})$ are of form \tilde{M}, where M is an indecomposable object in \mathcal{H}.

Now we discuss the cluster tilting objects in $\mathcal{C}_{Fm}(\mathcal{H})$. Denoted by $F = \tau^{-1}[1]$, which can be viewed as an automorphism of $D^b(\mathcal{H})$ or of $\mathcal{C}_{Fm}(\mathcal{H})$. The following proposition is a generalization of Lemma 4.14 in [KZ].

Proposition 3.4. An object T in $\mathcal{C}_{Fm}(\mathcal{H})$ is a cluster tilting object if and only if $\pi_m^{-1}(\text{add}\ T)$ is a cluster tilting subcategory of $D^b(\mathcal{H})$.

Proof. We only give a detailed proof in the case \mathcal{H} is equivalent to the module category of a finite dimensional hereditary algebra H. The proof in case \mathcal{H} is not of the form is similar.

Suppose that $\mathcal{H} \approx H - \text{mod}$, where H is a finite dimensional hereditary algebra over a field k. For an object T in $\mathcal{C}_{Fm}(\mathcal{H})$, we denote $T = \pi_m^{-1}(\text{add}\ T)$, which is a full subcategory of $D^b(\mathcal{H})$. It is easy to prove that $F(T) = T$ in $D^b(\mathcal{H})$ if and only if $F(\text{add}\ T) = \text{add}\ T$ in $\mathcal{C}_{Fm}(\mathcal{H})$.

Suppose \(T \) is a cluster tilting subcategory of \(D^b(H) \). Then \(FT = T \) by Lemma 2.4 or Proposition 4.7 [KZ]. Hence \(F(\text{add} T) = \text{add} T \) in \(C_{Fm}(H) \). We denote by \(T' \) the intersection of \(T \) with the additive subcategory \(C' \) generated by all \(H \)-modules as stalk complexes of degree 0 together with \(H[1] \). Then we have that \(T = \{ F^n(T') \mid n \in \mathbb{Z} \} \). Now \(\pi_m(T) = \pi_m(\bigcup_{i=0}^{m-1} F^i(T')) \), denoted by \(T_1 \). For any pair of objects \(T_1, T_2 \in T_1 \), there are \(T_1, T_2 \in T' \) such that \(T_1 = F^t(\pi_m(T_1)), T_2 = F^s(\pi_m(T_2)) \) with \(0 \leq t, s \leq m - 1 \). Then \(\text{Ext}^1(T_1, T_2) = \text{Hom}(T_1, T_2[1]) \cong \oplus_{n \in \mathbb{Z}} \text{Hom}_{D^b(H)}(F^n(T_1), (F^n)^*F^t(T_2[1])) = \oplus_{n \in \mathbb{Z}} \text{Hom}_{D^b(H)}(T_1, F^{mn+t-s}T_2[1]) \). By an easy computation, one has that \(\text{Hom}_{D^b(H)}(T_1, F^{mn+t-s}T_2[1]) = 0 \) if \(nm + t - s \leq -2 \) or \(nm + t - s \geq 1 \). When \(nm + t - s = -1 \), \(\text{Hom}_{D^b(H)}(T_1, F^{mn+t-s}T_2[1]) = \text{Hom}_{D^b(H)}(T_1, F^{-1}T_2[1]) = \text{Hom}_{D^b(H)}(T_1, T_2) \cong \text{Ext}^1_{D^b(H)}(T_2, T_1) \), which equals 0 by the fact that \(T \) is a cluster tilting subcategory of \(D^b(H) \). When \(nm + t - s = 0 \), \(\text{Hom}_{D^b(H)}(T_1, F^{mn+t-s}T_2[1]) = \text{Hom}_{D^b(H)}(T_1, T_2[1]) = \text{Ext}^1_{D^b(H)}(T_1, T_2) \), which equals 0 by the fact that \(T \) is a cluster tilting subcategory of \(D^b(H) \). Therefore \(\text{Ext}^1(T_1, T_2) = 0 \), i.e. \(T_1 \) is rigid in \(C_{Fm}(H) \).

If there are indecomposable objects \(X = \pi_m(X) \in C_{Fm}(H) \) with \(X \in D^b(H) \) satisfying \(\text{Ext}^1(T_1, X) = 0 \), then \(\text{Ext}^1(F^nT', X) = 0 \) for any \(n \), and then \(\text{Ext}^1(T, X) = 0 \). Hence \(X \in T \) since \(T \) is a cluster tilting subcategory. Thus \(X \in T_1 \). This proves that the image \(T_1 \) of \(T \) under \(\pi_m \) is a cluster tilting subcategory of \(C_{Fm}(H) \).

Conversely, from \(T = \pi_m^{-1}(T_1) \) and \(F(T_1) = T_1 \), we get \(F(T) = T \). As above we denote by \(T' \) the intersection of \(T \) with the additive subcategory \(C' \) generated by all \(H \)-modules as stalk complexes of degree 0 together with \(H[1] \). Then \(T = \{ F^n(T') \mid n \in \mathbb{Z} \} \) and \(T_1 = \pi_m(T) = \pi_m(\bigcup_{i=0}^{m-1} F^i(T')) \). From \(T_1 \) being contravariantly finite, we have \(T \) is also contravariantly finite. Since \(\text{Ext}^1(T_1, T_1) \cong \oplus_{n \in \mathbb{Z}} \text{Ext}^1_{D^b(H)}(\bigcup_{i=0}^{m-1} F^i(T'), F^n(\bigcup_{i=0}^{m-1} F^i(T'))) = 0 \), we have that \(\text{Ext}^1_{D^b(H)}(F^nT', F^nT') \cong \text{Ext}^1_{D^b(H)}(T', F^n-mT') = 0 \). This proves that \(T \) is a rigid subcategory. Now if \(X \in D^b(H) \) satisfies \(\text{Ext}^1_{D^b(H)}(T, X) = 0 \), then \(\text{Ext}^1_{C_{Fm}(H)}(F^n(T_1), X) = 0 \), \(\forall 0 \leq i \leq m - 1 \). It follows that \(X \in T_1 \), hence \(X \in T \). Similarly, if \(X \in D^b(H) \) satisfies \(\text{Ext}^1_{D^b(H)}(X, T) = 0 \), then \(X \in T \).

From Proposition 3.4 above and Lemma 4.14 in [KZ], we have a one-to-one correspondence between the three sets: the set of cluster tilting subcategories in \(D^b(H) \); the set of cluster tilting subcategories in \(C_{Fm}(H) \); the set of cluster tilting subcategories in \(C(H) \), via triangle covering functors: \(\pi_m : D^b(H) \to C_{Fm}(H) \) and \(\rho_m : C_{Fm}(H) \to C(H) \).

Theorem 3.5. Let \(H \) be a hereditary abelian category with tilting objects. Let \(T \in C(H) \).

1. \(T \) is a cluster tilting object in cluster category \(C(H) \) if and only if \(\rho_m^{-1}(T) \) is a cluster tilting object in \(C_{Fm}(H) \) if and only if \(\pi^{-1}(\text{add} T) \) is a cluster tilting subcategory in \(D^b(H) \).

2. For any tilting object \(T' \in H, \oplus_{i=0}^{m-1} F^iT' \) is a cluster tilting object in \(C_{Fm}(H) \), and any cluster tilting object in \(C_{Fm}(H) \) arises in this way, i.e. there is a hereditary abelian category \(H' \), which is derived equivalent to \(H \), and a tilting object \(T \in H' \) such that the cluster tilting object is induced from \(T \).

Proof. 1. It follows Lemma 4.14 in [KZ] or the special case of Proposition 3.4 where \(m = 1 \), that \(T \) is a cluster tilting object in \(C(H) \) if and only if \(\pi^{-1}(\text{add} T) \) is a
cluster tilting subcategory in $D^b(\mathcal{H})$. By Proposition 3.4, we have that $\rho_m^{-1}(T)$ is a cluster tilting object in $\mathcal{C}_{F^m}(\mathcal{H})$ if and only if $\pi_m^{-1}(\text{add}(\rho_m^{-1}(T)))$ is a cluster tilting subcategory in $D^b(\mathcal{H})$. Since $\pi = \rho_m \pi_m$, $\pi(\pi_m^{-1}(\text{add}(\rho_m^{-1}(T)))) = T$, we have that $\rho_m^{-1}(T)$ is a cluster tilting object in $\mathcal{C}_{F^m}(\mathcal{H})$ if and only if T is a cluster tilting object in $\mathcal{C}(\mathcal{H})$.

2. For any tilting object T' in \mathcal{H}, from [BMRRRT] and [Zh], T' is a cluster tilting object in $\mathcal{C}(\mathcal{H})$. Hence $\text{add}_{i=0}^{m-1}F^iT'$ is a cluster tilting object in $\mathcal{C}_{F^m}(\mathcal{H})$ by the first part of the theorem. Suppose M is a cluster tilting object in $\mathcal{C}_{F^m}(\mathcal{H})$. Then by the first part of the theorem, $\rho_m(M)$ is a cluster tilting object in the cluster category $\mathcal{C}(\mathcal{H})$. Therefore $\rho_m(M)$ is induced from a tilting object of a hereditary abelian category \mathcal{H}', which is derived equivalent to \mathcal{H} [Zh, BMRRRT]. Then M is induced from a tilting object of \mathcal{H}'.

\[\square\]

Definition 3.6. We call the endomorphism algebras $\text{End}_{\mathcal{C}_{F^m}(\mathcal{H})}T$ of cluster tilting objects T in the repetitive cluster category $\mathcal{C}_{F^m}(\mathcal{H})$ the generalized cluster-tilted algebras of type \mathcal{H}, or simply the generalized cluster-tilted algebras.

Now we study the representation theory of generalized cluster-tilted algebras. We recall that $\pi_m : D^b(\mathcal{H}) \longrightarrow \mathcal{C}_{F^m}(\mathcal{H})$ is the projection.

Theorem 3.7. Let T be a tilting object in \mathcal{H}, $\tilde{A} = \text{End}_{\mathcal{C}_{F^m}(\mathcal{H})}(\text{add}_{i=0}^{m-1}F^iT)$ the generalized cluster-tilted algebra.

1. \tilde{A} has a Galois covering $\pi_m : \pi^{-1}(\text{add}T) \rightarrow \rho_m^{-1}(\text{add}T)$ which is the restriction of the projection $\pi_m : D^b(\mathcal{H}) \rightarrow \mathcal{C}_{F^m}(\mathcal{H})$.

2. The projection π_m induces a push-down functor $\tilde{\pi}_m : \frac{D^b(\mathcal{H})}{\text{add}_{i=0}^{m-1}F^iT} \longrightarrow \tilde{A} \mod$. Under this equivalence, the subcategory $\text{add}(\pi_m(T))$ corresponds to the subcategory of projective \tilde{A}–modules.

3. If T' is a tilting object in \mathcal{H}, then the generalized cluster tilted algebra $\tilde{A}' = \text{End}_{\mathcal{C}_{F^m}(\mathcal{H})}(\text{add}_{i=0}^{m-1}F^iT')$ has the same representation type as A.

Proof. (1). Let $T = \text{add} (\{ F^i(T) | i \in \mathbb{Z} \})$, $T = \pi^{-1}(\text{add}T)$ is a cluster tilting subcategory of $D^b(\mathcal{H})$. Hence by Proposition 3.4, $\pi_m(T) = \rho_m^{-1}(\text{add}T)$ is a cluster tilting object in $\mathcal{C}_{F^m}(\mathcal{H})$. By Theorem 2.5, we have the equivalence $\mathcal{C}_{F^m}(\mathcal{H})/	ext{add}_{i=0}^{m-1}\pi_m(F^i(T)), -) : \mathcal{C}_{F^m}(\mathcal{H})/\text{add}_{i=0}^{m-1}\pi_m(F^i(T))) \rightarrow \tilde{A} \mod$. Under this equivalence, the subcategory $\text{add}(\pi_m(T))$ corresponds to the subcategory of projective \tilde{A}–modules.

The projection π_m sends T to $\pi_m(T)$. Thus $\pi_m|T : T \longrightarrow \rho_m^{-1}(T)$ is a Galois covering with Galois group generated by F^m.

(2). By Theorem 3.3 and Corollary 4.4 in [KZ] there are equivalences $D^b(\mathcal{H})/\text{add}T[1] \cong \text{mod}(T)$ and $\mathcal{C}_{m}(\mathcal{H})/(\pi_m(T)[1]) \cong \text{mod}(\pi_m(T))$. We define the induced functor $\tilde{\pi}_m$ as follows: $\tilde{\pi}_m(X) := \pi_m(X)$ for any object $X \in D^b(\mathcal{H})/\text{add}T[1]$, and $\tilde{\pi}_m(f) := \pi_m(f)$ for any morphism $f : X \rightarrow Y$ in $D^b(\mathcal{H})/\text{add}T$. Clearly $\tilde{\pi}_m$ is well-defined and makes the following diagram commutative:
\[D^b(\mathcal{H}) \xrightarrow{\pi_m} \mathcal{C}(\mathcal{H}) \]
\[P_1 \downarrow \]
\[D^b(\mathcal{H})/T[1] \xrightarrow{\pi_m} \mathcal{C}(\mathcal{H})/\pi(T)[1]. \]

Where \(P_1, P_2 \) are the natural quotient functors. Then \(\pi_m \) is a covering functor from \(D^b(\mathcal{H})/T[1] \) to \(\mathcal{C}_{F^m}/\pi(T[1]) \), i.e., it is a covering functor from \(D^b(\mathcal{H})/T[1] \) to \(\tilde{A} - \text{mod} \) (\(\approx \text{mod}(\pi_m(T)) \)).

(3) This is a direct consequence of Theorem 2.2 \(\square \)

Similarly as above, the triangle covering functor \(\rho_m : \mathcal{C}(\mathcal{H}) \to \mathcal{C}(\mathcal{H}) \) induces a covering functor from \(\tilde{A} \) to the cluster-tilted algebra \(\text{End}_{\mathcal{C}(\mathcal{H})}T \) indicated as the following Theorem.

Theorem 3.8. Let \(T \) be a tilting object in \(\mathcal{H} \), \(A = \text{End}_{\mathcal{C}(\mathcal{H})}T \) and \(\tilde{A} = \text{End}_{\mathcal{C}_{F^m}(\mathcal{H})}(\oplus_{i=0}^{m-1} F^i T) \) the generalized cluster-tilted algebra.

1. \(\rho_m : \mathcal{C}_{F^m}(\mathcal{H}) \to \mathcal{C}(\mathcal{H}) \) restricted to the cluster tilting subcategory \(\text{add}(\bigcup_{i=0}^{m-1} F^i T) \) induces a Galois covering of \(A \).

2. The functor \(\rho_m \) also induces a push-down functor \(\tilde{\rho}_m : \tilde{A} - \text{mod} \longrightarrow A - \text{mod} \).

Proof. The strategy of the proof is almost the same as that of Theorem 3.7, we present it here for the convenience of reader.

(1) By Theorem 3.5, \(\rho_m^{-1}(T) \) is a cluster tilting object in \(\mathcal{C}_{F^m}(\mathcal{C}) \), and \(\rho_m^{-1}(T) = \oplus_{i=1}^{m-1} F^i(T) \). By Theorem 2.5, we have the equivalence \(\text{Hom}_{\mathcal{C}_{F^m}(\mathcal{H})}(\rho_m^{-1}(T), -) : \mathcal{C}_{F^m}(\mathcal{H}) \to \tilde{A} - \text{mod} \). Under this equivalence, the subcategory \(\text{add}(\rho_m^{-1}(T)) \) corresponds to the subcategory of projective \(\tilde{A} \)-modules.

The triangle functor \(\rho_m \) sends \(\text{add}(\rho_m^{-1}(T)) \) to \(\text{add}T \). Thus \(\rho_m|_{\text{add}(\rho_m^{-1}(T))} : \text{add}(\rho_m^{-1}(T)) \to \text{add}T \) is a Galois covering with Galois group \(Z_m \).

(2) By Theorem 3.3 and Corollary 4.4 in [KZ], there is an equivalence \(\mathcal{C}_m(\mathcal{H})/\langle \text{add}(\rho_m^{-1}(T))[1] \rangle \cong \tilde{A} - \text{mod} \). We define the induced functor \(\tilde{\rho}_m \) as follows: \(\tilde{\rho}_m(X) := \rho_m(X) \) for any object \(X \in \mathcal{C}_m(\mathcal{H})/\langle \rho_m^{-1}(T) \rangle[1] \), and \(\tilde{\rho}_m(f) := \rho_m(f) \) for any morphism \(f : X \to Y \) in \(\mathcal{C}_m(\mathcal{H})/\langle \rho_m^{-1}(T) \rangle \). Clearly \(\tilde{\rho}_m \) is well-defined and makes the following diagram commutative:

\[\begin{array}{ccc} \mathcal{C}_{F^m}(\mathcal{H}) & \xrightarrow{\rho_m} & \mathcal{C}(\mathcal{H}) \\ P_1 \downarrow & & P_2 \downarrow \\ \mathcal{C}_{F^m}(\mathcal{H})/\text{add}(\rho_m^{-1}(T))[1] & \xrightarrow{\tilde{\rho}_m} & \mathcal{C}(\mathcal{H})/\text{add}(T[1]). \end{array} \]

Where \(P_1, P_2 \) are the natural quotient functors. Then \(\tilde{\rho}_m \) is a covering functor from \(\mathcal{C}_m(\mathcal{H})/\langle \text{add}(\rho_m^{-1}(T))[1] \rangle \) to \(\mathcal{C}/\text{add}(T[1]) \), i.e, it is a covering functor from \(\tilde{A} - \text{mod} \) to \(A - \text{mod} \). \(\square \)

Remark 3.9. By Proposition 2.7, see also [ABS,Zh], the cluster-tilted algebra \(A \) of type \(\mathcal{H} \) can be written as a trivial extension \(A = B \times M \), where \(M = \text{Ext}^2_B(DB,B) \). Then
A has as \(\mathbb{Z} \)-covering the following (infinite dimensional) matrix algebra (i.e. the cluster repetitive algebra in [ABS³]):

\[
A_\infty = \begin{bmatrix}
\vdots & B \\
\vdots & M & B \\
& \vdots & M & B \\
\end{bmatrix}
\]

On the other hand, \(A = B \times M \) is also a \(\mathbb{Z}_m \)-graded algebra. Then \(A \) has a \(\mathbb{Z}_m \)-covering \(A^\# \mathbb{Z}_m \), the smash product of graded algebra \(A \) with group \(\mathbb{Z}_m \) [CM].

Examples

1. Let \(D^b(H) \) be the (bounded) derived category of hereditary algebra \(H \), where \(H \) is the path algebra of the quiver:

\[
\begin{array}{c}
\circ \\
\circ \\
\circ \\
\end{array} \quad \begin{array}{c}
\circ \\
\circ \\
\circ \\
\end{array} \quad \begin{array}{c}
\circ \\
\circ \\
\circ \\
\end{array}
\]

If we take \(T \) to be the subcategory generated by \(\{ \tau^{-n}P_a[n], \tau^{-n}S_a[n], \tau^{-n}P_c[n] \mid n \in \mathbb{Z} \} \), then \(T \) is a cluster tilting subcategory of \(D^b(H) \) and \(D^b(H)/T \cong A_\infty - \text{mod} \) where \(A_\infty \) is the algebra with quiver

\[
A_\infty: \cdots \circ \rightarrow \circ \rightarrow \circ \rightarrow \cdots
\]

and with \(\text{rad}^2 = 0 \) [KZ].

2. Let \(m = 1 \). We consider the cluster category \(\mathcal{C}(H) \). If we take \(T = P_a \oplus P_c \oplus S_a \), then \(T \) is a cluster tilting object of \(\mathcal{C}(H) \) and \(\mathcal{C}(H)/(\text{add}T) \cong A - \text{mod} \) where \(A \) is the algebra with quiver

\[
\begin{array}{c}
\circ \\
\circ \\
\circ \\
\end{array}
\]

and with \(\text{rad}^2 = 0 \).
3. Let $m = 2$. We consider the repetitive cluster category $C_{F^2}(A)$. If we take T' to be the subcategory generated by $\{\tau^{-n}P_a[n], \tau^{-n}S_a[n], \tau^{-n}P_c[n] \mid n = 0, 1\}$, then T' is a cluster tilting subcategory of $C_{F^2}(A)$ and $C_{F^2}(A)/T' \cong A_1 - \text{mod}$ where A_1 is the algebra with quiver

$$Q_1 : \quad \begin{array}{c}
\circ \quad \rightarrow \quad \circ \\
\uparrow \quad \circ \quad \rightarrow \quad \circ \\
\circ \quad \leftarrow \quad \circ \quad \leftarrow \quad \circ
\end{array}$$

and with $\text{rad}^2 = 0$.

4. Let $m = 3$. We consider the repetitive cluster category $C_{F^3}(A)$. If we take T'' to be the subcategory generated by $\{\tau^{-n}P_a[n], \tau^{-n}S_a[n], \tau^{-n}P_c[n] \mid n = 0, 1, 2\}$, then T'' is a cluster tilting subcategory of $C_{F^3}(A)$ and $C_{F^3}(A)/T'' \cong A_2 - \text{mod}$ where A_2 is the algebra with quiver

$$Q_2 : \quad \begin{array}{c}
\circ \quad \rightarrow \quad \circ \quad \rightarrow \quad \circ \quad \rightarrow \quad \circ \\
\circ \quad \leftarrow \quad \circ \quad \leftarrow \quad \circ \quad \leftarrow \quad \circ
\end{array}$$

and with $\text{rad}^2 = 0$.

ACKNOWLEDGMENTS.

The author would like to thank the referee for his/her useful suggestions to improve the paper.
References

