Resource loading appears in many variants in tactical (mid-term) capacity planning in multi-project environments. It develops a rough sketch of the resource usage and timing of the work packages of a portfolio of orders. The orders need to be executed within a time horizon organized into periods, each of which has a known number of workers available. Each order has a time window during which it must be executed, as well as an upper and lower bound on the number of workers that can work on this order in a period. The duration of the order is not fixed beforehand, but depends on the number of workers (intensity) with which it is executed.

In this article we define three fundamental variants of resource loading and study six special cases that are common to the three variants. We present algorithms for those cases that can be solved either in polynomial time or in pseudo-polynomial time. The remaining cases are proven to be \textsc{np}-complete in the strong sense, and we discuss the existence of approximation algorithms for some of these cases. Finally, we comment on the validity of our results when orders must be executed without preemption. Although inspired by a number of practical applications, this work focuses on the properties of the underlying generic combinatorial problems. Our findings contribute to a better understanding of these problems and may also serve as a reference work for authors looking to design efficient algorithms for similar problems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many organizations adopt a project structure to cope with large and highly complex tasks. These tasks usually involve expertise from many different departments or teams, such as engineering, service providers, process and production planning, and various production departments (De Boer, 1998). Traditionally, research in the area of project planning has focused on planning isolated projects. Many companies, however, employ an organizational structure in which multiple projects are run in parallel, sharing the same limited resources. This corresponds with a so-called ‘matrix structure’: resources are associated with functional departments, but are assigned to different ongoing projects over time (Larson & Gobeli, 1989). Adler, Mandelbaum, Nguyen, and Schwerer (1995) point out that frequent conflicts of interest arise when more than one project requires the same resource at the same time. The global coordination of such multi-project organizations is the essence of multi-project management. An aggregate, combined project plan facilitates cross-project analysis and reporting (Kerzner, 1998), and offers a useful tool for management to ensure that the organization does not take on more projects than it can complete (cf. Wheelright and Clark, 1992). Speranza and Vercellis (1993) observe that, because of the multi-objective and dynamic nature of multi-project planning, a monolithic approach is inadequate for most practical applications. Instead, they suggest a decomposition into an operational and tactical planning phase. In the latter phase, which we refer to as resource loading, the distinct production operations are often aggregated into jobs representing whole production phases, and planning and scheduling decisions typically pertain to these so-called work packages (Alferi, Tolio, & Urgo, 2011). While detailed production planning (scheduling) at the operational level has already been the subject of extensive research efforts for various industrial sectors, the work on mid-term capacity planning is rather limited. This paper contributes to a better understanding of the latter through a careful analysis of the underlying combinatorial optimization problem.

1.1. Problem description

We are given a set of potential orders (henceforth, ‘jobs’) and a work roster for the planning horizon. The workforce capacity may change over time in function of the individual workers’ calendars and
earlier capacity-allocation decisions. Each job has a release time and a
deadline, which together make up the job’s time window, as well as a
work content (equivalently referred to as workload), expressed in
worker-periods. The essential difference between ‘classic’ planning
and scheduling, on the one hand, and resource loading, on the other
hand, is that the latter allows flexible resource utilization for the jobs
to be performed, i.e. the workload can, to a certain extent, be spread
over several periods in the planning horizon, and this in varying pro-
portions. The duration of a job is therefore not fixed beforehand, but
depends on the number of workers (intensity) with which the job is
executed. Additionally, this intensity can change over time. A job
can, for example, be started with two workers and completed with
one, or vice versa. This model is of particular interest for tactical
planning in equipment maintenance and in project-based make-to-
order (MTO) and engineer-to-order (ETO) environments, where ca-
pacity utilization may strongly fluctuate over time and orders may
vary significantly with respect to routings, material and tool require-
ments. Moreover, these attributes may not be fully known at the stage
of order acceptance. In the classic product-process matrix of Hayes
and Wheelwright (1979), these environments belong to the same cell
because they all deal with low-volume, low-standardization, one-
of-a-kind products or assignments, with high variety. The available
capacity is therefore flexibly planned in an aggregate fashion, relegat-
ing detailed scheduling decisions to the operational level. Through-
out this text, we mainly refer to workers as the resource type being
planned, but obviously the results obtained can also be directly ap-
plied to other renewable (i.e., non-consumable) resource types such
as machines and other equipment.

1.2. Practical applications

As mentioned supra, resource loading is part of tactical capacity
management, which seeks to develop a rough overview of the re-
source usage and timing of the work packages involved in a given
portfolio of orders. Dependent on the application, this may entail
due-date setting and accept/reject decisions for individual orders,
as well as choices regarding overtime and subcontracting. One spe-
cific application pertains to the planning of aircraft line maintenance,
the routine maintenance performed at airports between flight arrival
and departure. Line maintenance takes place on the tarmac (not in a
hangar): typical tasks include troubleshooting, minor repairs, sys-
tems servicing, and the removal or replacement of components such
as batteries, filters and reflectors. For each flight, the maintenance
must be performed between the scheduled time of arrival and the
scheduled time of departure of the aircraft, and the expected main-
tenance workload is known (see Beliën, Demeulemeester, & Cardoen,
2012). A similar application has been described for maintenance pro-
cedures of civil helicopters by Masmoudi (2011), more precisely for
the so-called Heavy Maintenance Visit (HMV). For individual heli-
copters, HMVs are of a very low frequency: on average they occur
only once every 12 years. De Boer (1998) describes similar problems
encountered at the Royal Netherlands Navy (RNN) Dockyard, in the
context of maintenance and repair of national-defence marine equip-
ment. As an application in MTO environments rather than service
operations, we can mention a tactical production-planning problem
in sheet-metal production. Each order here consists of one or more
jobs that are related via chain-like precedence constraints, and each
job visits one specific machine group (a preliminary study was done
in a Master’s thesis by Smeulders, 2011). Other practical illustrations
of resource loading are presented by Naber and Kolisch (2014).

1.3. Contributions

We define three fundamental problem variants. We first consider
the decision problem that verifies the existence of a feasible sched-
ule that executes all orders with the workers available. Second, we
study the scheduling problem of finding a feasible schedule that min-
imizes the number of additional worker-periods needed to execute
all orders within the planning horizon. Finally, we look into the com-
bined selection and scheduling problem of choosing a subset of orders
that can be executed with the workers available while maximizing
the total revenue. We identify six special cases that apply to each of
these three related problems, and present algorithms for those cases
that can be solved either in polynomial time or in pseudo-polynomial
time. The remaining cases are shown to be np-complete in the strong
sense, and we also discuss the existence of approximation algorithms
for some of these cases. Finally, we comment on the validity of our re-
sults when orders must be executed without preemption: in practice,
management often prefers a schedule in which jobs are not inter-
rupted and resumed at a later time.

Although inspired by a number of practical applications, this work
focuses on the properties of the underlying generic combinatorial
problems. Our findings contribute to a better understanding of the
structural properties of resource loading. In addition, they can serve
as a reference work for authors looking to design efficient algorithms
for similar problems: the proposed algorithms can be implemented
as a subroutine within any framework for solving practical problems.
Beliën et al. (2012), for instance, propose a two-level solution ap-
proach for the line maintenance problem at Sabena Technics, where
at the higher level an enumeration of a number of shift planning op-
tions is performed, and at the lower level a resource loading instance
(as defined in Section 2.1) is encountered for each of the enumerated
options. If the instances to be solved at the lower level display some of
the specific characteristics outlined in Section 2.4, or can without too
much loss of practical validity be modified to match those character-
istics, then substantial runtime savings can be achieved by solving the
instances with a dedicated algorithm (such as those proposed in this
text) rather than by means of a commercial mixed-integer program-
ning (MIP) solver (which is used by Beliën et al.). More generally,
for any practical application, the work in this article allows to assess
which of the modeling assumptions will tilt the problem from easily
solvable to intractable.

1.4. Organization

The remainder of this article is organized as follows. In Section 2,
we give a formal definition of the three problem variants and re-
view the relevant literature. In Section 3 the decision-problem vari-
ant is discussed, while the scheduling variant is analyzed in Section 4,
and Section 5 focuses on resource loading with job selection. Finally,
Section 6 presents conclusions and suggestions for future research.

2. Problem statement

We provide a formal problem statement in Section 2.1, followed
by an illustrative example (Section 2.2). Section 2.3 briefly reviews
the relevant literature, while in Section 2.4 the results obtained in the
following sections are summarized.

2.1. Problem description

We consider H consecutive time periods that constitute the plan-
ing horizon, where period t ($t = 1, \ldots, H$) runs from time (instant)
$t − 1$ to t (period 1, for instance, is the interval $[0, 1]$). For aircraft line
maintenance, for instance, the planning horizon is typically 1 week:
the same flights are to be serviced every week. In period t, c_t workers
are available (this number can be derived from the work roster). We
denote by $N = \{1, 2, \ldots, n\}$ the set of available jobs (orders), which
can be executed by a single resource type (representing the workers)
within the planning horizon. Each job J has a release time r_j, before
which it cannot be started, and a deadline d_j, which represents the
ultimate completion time of the job. In other words, each job \(j \) is associated with a time window \([r_j, \bar{d}_j]\). The work content (workload) of job \(j \) is denoted by \(p_j \), and is expressed in worker-periods. Furthermore, each job \(j \) has a pre-specified minimum number of workers \(\ell_{bj} \) that must, and a maximum number \(u_{bj} \) that can be assigned, during each period in which it is scheduled (\(1 \leq \ell_{bj} \leq u_{bj} \leq p_j \)). In aircraft maintenance, for example, the size of the aircraft and the specific nature of each task impose an upper bound on the number of workers that can work simultaneously, while (for safety reasons and effective coordination) there is also a minimum number of workers that should be present around the aircraft when maintenance is performed.

For each job \(j \), we assume that \(\ell_{bj} \leq \ell_j \) for each period \(t \) during which \(j \) can be executed, and \(u_{bj} \leq \max(\ell_j, \bar{d}_j) \). The decision problem RLP-DECISION answers the question whether it is possible to devise a schedule that executes all jobs within the time horizon while respecting the time windows as well as the bound and capacity constraints. By RLP-scheduling we refer to the problem of finding a schedule that executes all the jobs using a minimum number of extra worker-periods. In practice, this implies that, if needed, external workers will be hired on a per-period basis or part of the work is subcontracted. Note that by solving RLP-scheduling we can also infer the answer to RLP-decision. Finally, we consider that each job \(j \) also has a revenue \(Q_j \), which is gained only when the job is completed, and depends on the nature of the job and the fee the client is willing to pay. The objective of the third problem, RLP-seleciton, is (1) to evaluate which jobs should be accepted in order to maximize total revenue and (2) to derive a feasible schedule that executes all the selected jobs within the time horizon using the workers available. Clearly, RLP-seleciton is also at least as hard as the problem RLP-decision, but no such obvious relationship exists between RLP-scheduling and RLP-seleciton.

A MIP formulation of these three problem variants uses the binary decision variables \(x_{jt} \) defined for \(j \in N \) and \(t \in \{r_j + 1, \ldots, \bar{d}_j\} \), with the interpretation that \(x_{jt} = 1 \) if and only if job \(j \) is executed in period \(t \), and the integer variables \(y_{jt} \in \{0, \ell_{bj}, \ell_{bj} + 1, \ldots, u_{bj}\} \) \((j \in N \text{ and } t \in \{r_j + 1, \ldots, \bar{d}_j\})\) representing the number of workers assigned to job \(j \) in period \(t \). For RLP-scheduling we also use integer variables \(z_t \) \((t = 1, \ldots, H)\) to indicate the number of external workers hired in period \(t \). Finally, problem RLP-seleciton also gives rise to binary variables \(s_j \) for \(j \in N \), with \(s_j = 1 \) if and only if job \(j \) is selected. A formulation contains the following set of constraints, which says that each job (each selected job, for RLP-seleciton) should be executed completely between its release time and deadline.

\[
\sum_{t = r_j + 1}^{\bar{d}_j} y_{jt} = p_j s_j, \quad j = 1, \ldots, n. \tag{1}
\]

For RLP-decision and RLP-scheduling, all the variables \(s_j \) in Eq. (1) take the value 1. The workload assigned to each period cannot exceed the number of workers available (including external workers), which translates into:

\[
\sum_{j = 1}^{n} y_{jt} \leq \ell_j + z_t, \quad t = 1, \ldots, H. \tag{2}
\]

For RLP-decision and RLP-seleciton, all the variables \(z_t \) in Eq. (2) are set at 0. Eq. (3) ensures that the number of workers assigned to each job in each period is either 0 or within the specified lower and upper bounds.

\[
\ell_{bj} \leq y_{jt} \leq u_{bj} x_{jt}, \quad j = 1, \ldots, n, \quad t = r_j + 1, \ldots, \bar{d}_j. \tag{3}
\]

The problem RLP-decision corresponds with deciding whether the domain defined by constraints (1)–(3), with all \(s_j = 1 \) and \(z_t = 0 \), is non-empty. Problem RLP-scheduling consists in optimizing the objective function (4) subject to constraints (1)–(3), with all \(s_j = 1 \).

\[
\min \sum_{t = 1}^{H} z_t \tag{4}
\]

Finally, RLP-seleciton amounts to solving

\[
\max \sum_{j = 1}^{n} Q s_j \tag{5}
\]

subject to constraints (1)–(3), with all \(z_t = 0 \).

A solution to RLP-decision, RLP-scheduling of RLP-seleciton is entirely determined by the matrix \(Y = (y_{jt})_{j, t} \) for \(j = 1, \ldots, n \) and \(t = 1, \ldots, H \). We can deduce the value of the remaining variables as follows: \(x_{jt} \) is 1 if and only if \(y_{jt} > 0, \) \(s_j = 1 \) if and only if \(\sum_{t = r_j + 1}^{\bar{d}_j} y_{jt} > 0, \) and \(z_t = \max(0, \sum_{j = 1}^{n} y_{jt} - \ell_j) \). Throughout this paper, we denote a solution to RLP-decision, RLP-scheduling and RLP-seleciton by \(Y, \) and we resort to the variables \(X = (x_{jt})_{j, t}, S = (s_j) \) and \(Z = (z_t) \) only when necessary.

Next, we present our first result, which states that the integrality constraint on the variables \(y_{jt} \) in the MIP formulations can be relaxed if all the parameters are integers.

Proposition 1. If all parameters are integers, then any optimal solution to RLP-decision, RLP-scheduling or RLP-seleciton obtained using the MIP formulations without integrality constraint on \(y_{jt} \) can be transformed in polynomial time into an equivalent solution satisfying the restriction \(y_{jt} \in \{0, 1, \ell_{bj}, \ell_{bj} + 1, \ldots, u_{bj}\} \) for all \(j \in N \) and \(t = 1, \ldots, H \).

Proof. We prove this result for the problem RLP-seleciton, the reasoning for RLP-decision and RLP-scheduling is analogous. Assume that all parameters are integers and let \(Y \) be an optimal solution to the MIP formulation for RLP-seleciton without integrality constraint (so \(y_{jt} \geq 0 \) for \(j \in N \) and \(t = 1, \ldots, H \)). Suppose that some components of \(Y \) are not integer. If there is a unique job \(j_0 \in \{1, \ldots, n\} \) for which some \(y_{j_0 t} \) are fractional, then we define an integral solution \(Y \) as follows. Let \(t_1 \) be the first period (smallest index) with \(y_{j_0 t_1} \) fractional; we build a new solution \(Y \) with integer \(y_{j_0 t_1} \) for \(t_1 \leq t \leq t_2 < H \) and for all \(j \) by defining \(y_{jt} = y_{jt_1} \) for \(j \in N \setminus \{j_0\} \) and \(t = 1, \ldots, H \); and \(y_{j_0 t} = [y_{j_0 t_1}] \) for \(t \leq t_1 \) (here \([·]\) is the symbol for the ceiling); the remaining \(y_{jt} \) with \(t > t_1 \) are adapted accordingly. More concretely, let \(t_2 > t_1 \) be the first period so that \(y_{jt_2} - y_{jt_2} \geq \sum_{t = t_1+1}^{t_2} y_{jt} - [y_{jt_1}] \) (where \([·]\) is the symbol for the floor), then \(y_{jt} = [y_{jt_1}] \) for \(t_1 < t < t_2 ; \) \(y_{jt_2} = [y_{jt_2}] + \sum_{t = t_1+1}^{t_2} y_{jt} - [y_{jt_1}] - y_{jt_2} + y_{jt_1} \) and \(y_{jt} = y_{jt_1} \) for \(t > t_2 \). By repeating this procedure at most \(H \) times, we arrive at a solution \(Y \) whose components are integer. Furthermore, \(Y \) is a solution to RLP-seleciton that executes the same jobs as \(Y' \), and hence \(Y \) and \(Y' \) have the same objective value.

Now suppose that more than one job has fractional components. Without loss of generality, we assume that for \(t = 1, \ldots, H \), either \(y_{jt} \in \{0, \ell_{bj}, \ell_{bj} + 1, \ldots, u_{bj}\} \) for all \(j \in N \), or there are at least two jobs \(j_1 \) and \(j_2 \) that are executed with a fractional number of workers in that period. If this is not the case, we simply consider the equivalent solution where for that unique job, say \(j_1 \), we have replaced \(y_{j_1 t} \) by \([y_{j_1 t}] \), and the execution of job \(j_2 \) in the subsequent periods is adapted as described above. Using a similar argument, we can assume that for each period \(t \) the quantity \(\sum_{j = 1}^{n} y_{jt} \) is integer.

Let \(Y' \) be an optimal solution to the relaxation of the MIP formulation for RLP-seleciton satisfying the above restrictions. We build the following weighted complete bipartite graph \(G = (V_1 \cup V_2, E) \), where each node in \(V_1 \) corresponds with a job \(j \) having at least one period \(t \) where \(y_{jt} \) is fractional and each node in \(V_2 \) corresponds with a period \(t \) with at least one job \(j \) with \(y_{jt} \) fractional; we write \(V_1 = \{j_1, j_2, \ldots, j_k\} \) and \(V_2 = \{t_1, t_2, \ldots, t_\beta\} \), where \(\alpha \leq n \) and \(\beta \leq H \). Each node \(i \in V_1 \) is
a source node with supply \(\sum_{t} d_{ij}^{t} = |y_{jt}^r - |y_{jt}^r|\), and each node \(t \in V_2 \) is a sink node with demand \(\sum_{j} c_{ij}^{t} = |y_{jt}^r - |y_{jt}^r|\). Finally, each arc \((i, t) \in V_1 \times V_2\) has unit capacity, and zero cost if \(y_{jt}^r \neq |y_{jt}^r| \) and cost = \(M\) otherwise, where \(M\) is a large positive number. All the arc capacities are integer, so the integrality theorem (Ahuja, Magnanti, & Orlin, 1993) implies that there exists an optimal integer solution to the resulting capacitated network flow instance. Furthermore, since there is a fractional solution with cost 0, we infer that any optimal integer solution also has objective value 0. Let \(A = (a_{ij}^{k,t}, k, t)\), for \(k = 1, \ldots, \alpha\) and \(t = 1, \ldots, \beta\), be such an optimal integer solution, which can obtained in polynomial time (Ahuja et al., 1993). We consider the matrix \(Y\) defined as follows: for \((j, t) \in V_1 \times V_2\) we have \(y_{jt} = y_{jt}^r\) and for \((j, t) \in V_1 \times V_2\) we set \(y_{jt} = |y_{jt}^r| + a_{jt}\). Matrix \(Y\) is an integer solution to RLP-seleciton that executes the same jobs as \(Y^r\); therefore \(Y\) and \(Y^r\) have the same objective value.

We close this section with additional definitions. We say that a job \(j \in N\) is splittable if and only if 2 \(L_{j}\) \(\leq p_j\) and \(r_j + 1 \leq \bar{d}_j\), which are two necessary conditions for a job to be executable over more than one period. Note that in an optimal schedule a splittable job need not be executed in multiple periods. A job \(j \in N\) is said to be executed without preemption if and only if it is executed in consecutive periods, meaning that all periods with \(y_{jt} = 1\) are consecutive, for all \(j \in N\). When \(L_{j} \geq 1\) for \(j = 1, \ldots, n\), Proposition 1 remains valid even if each job must be executed without preemption. In Section 2.4 we will conclude that cases where \(L_{j} = 0\) can be replaced by \(L_{j} = 1\), so the result holds regardless of the values of the lower bounds.

2.2. Illustrative example

We now present a small example to illustrate the foregoing definitions. We consider a planning horizon with \(H = 10\) weeks, with capacities \((c_1, c_2, \ldots, c_H) = (2, 3, 3, 5, 7, 9, 8, 8, 10, 9)\). Observe that the available capacity is lower especially in the first weeks of the planning horizon. As noted by Hans (2001), this typically occurs in practice when capacity is reserved for (scheduled) orders that are already on the shop floor, and that may not be shifted in time. The remaining data are gathered in Table 1.

An optimal solution to the corresponding instance of RLP-scheduling is graphically depicted in Fig. 1(a). The thick black curve represents the available regular capacity; the minimum required number of external workers is 13. The answer to the associated RLP-decision instance is therefore No. Fig. 1(b) represents an optimal solution to the RLP-selection instance with the same parameters; the maximum total revenue is 61, which is achieved by selecting all jobs except job 8.

2.3. Literature review

2.3.1. Resource loading

This paper models tactical capacity planning in equipment maintenance, MTO and ETO. To date, few studies have dealt with similar problems. The articles most related to our work focus on tactical planning and use a “bucketized” time horizon (each period is a “bucket”). This includes Hans (2001) and Mistry, Damodaran, and Chen (2011), which both develop a branch-and-price algorithm. Variants of our problem are studied by Wullink, Gademann, Hans, and van Harten (2004), whose main contribution is the incorporation of uncertainty, Gademann and Schutten (2005), who propose linear-programming-based heuristics, and Alfieri et al. (2011), who study the inclusion of “feeding” precedence constraints, which allow some overlap in the execution of precedence-related activities. The use of a discrete time horizon is quite common in medium-term production planning for make-to-stock environments, but the underlying models are quite different in other respects (they generally formalize lot-sizing decisions; see, for instance, Pochet & Wolsey, 2006). In lot-sizing terminology, we work with “big buckets” rather than “small buckets,” because more than one job can be scheduled in the same bucket (see Suerie & Stadtler, 2003). In our model, we will decide which proportion of the workload of each job should be performed during each time period.

In the operational planning literature, models quite similar to our planning of work packages have been studied under the title of project scheduling with “variable-intensity” or “continuously divisible” activities or “flexible resource profiles”; examples are Fündeling and Trautmann (2010); Kogan and Shhtub (1999); Leachman (1983); Leachman, Dincerler, and Kim (1990); Naber and Kollisch (2014). The first three

![Fig. 1. An optimal solution to RLP-SCHEDULING and RLP-SELECTION for the example instance.](image-url)
papers only describe heuristic algorithms, while Kogan and Shhtub (1999) provide a characterization of optimal solutions and preliminary computational results, and Nabek and Kolisch (2014) compare a number of MIP formulations by means of a commercial solver. Another recent contribution to this field of literature is Kis (2005), who reports computational results for benchmark data sets based on a branch-and-cut algorithm. An early study, which considers a continuous time horizon, is Weglarz (1981). A different line of literature adheres more closely to operational machine scheduling, such as Kim, Shim, Kim, Choi, and Yoon (2004); Sadykov (2012); Serafini (1996); Xing and Zhang (2000). The references Günther, König, and Megow (2014); Hendel, Kubiak, and Trystram (2014); Jansen (2004); Jansen and Porkolab (2002); Mounié, Rapine, and Trystram (2007) investigate the problem of scheduling "malleable jobs," whereas Baptiste, Le Pape, and Nuijten (1999) focus on the "fully elastic cumulative scheduling problem," with an equivalent solution space. The models studied in the above references differ from the resource loading variants examined in this paper in the sense that, to the best of our knowledge, none of the theoretical work cited has considered time windows, lower and upper bounds, or job selection, apart from Baptiste et al. (1999), which does consider time windows and contains a result that corresponds to our Lemma 2. Finally, in Section 5.5 of his recent handbook, Drozdowski (2009) provides a very thorough summary of parallel-machine scheduling with malleable jobs, with some isolated results in multiprocessor scheduling where upper bounds or ready times are also considered. The problem statement, however, never fully coincides with ours.

2.3.2. Order selection

In today's competitive manufacturing environment, organizations commit to meeting the order deadlines agreed with customers. However, order acceptance often takes place without considering the effect on the planning of other jobs in the order portfolio. As pointed out by Herbots, Herroelen, and Leus (2007) and Guerrero and Kern (1998), an integration of job selection and planning within a firm is essential to avoid conflicts of interest between the sales department, which tends to accept as many jobs as possible, and the production department, which attempts to meet the delivery dates promised to clients.

This integration of order acceptance decisions has already been investigated within the domain of tactical job-shop planning; for some recent work, see Ebben, Hans, and Olde Weghuis (2005); Slotnick and Morton (2007). Extensive literature surveys on the topic of order acceptance and scheduling are provided by Keskinocak and Tayur, 2004, Chap. 12; Roundy et al. (2005); Slotnick (2011) and Talla Nobibon and Leus (2011). In a more classic scheduling context, the goal of "maximum-throughput scheduling" is to find a non-preemptive schedule that maximizes the weight of the jobs for which the deadline can be met (see, for instance, Bar-Noy, Guha, Naor, & Schieber, 2001; Engels et al., 2003). In the standard notation for scheduling problems, this boils down to variants of $P|\tau_i| \sum (1 - U_i)$, a topic which goes back as early as Moore (1968).

2.4. Our results

Each of the problems RLP-decision, RLP-scheduling and RLP-selection are considered separately in Sections 3, 4 and 5, respectively. In each section, we focus on the following specific cases: (1) no time windows and no bound constraints, (2) no bound constraints, (3) no lower bounds, (4) no upper bounds, (5) only one job, and finally (6) exactly two jobs. In this context, the 'no time windows' case corresponds with having the same time window $[0, H]$ for each job; 'no upper bound' equates with $U_j = p_j$, and 'no lower bound' means that $L_j = 0$, which is equivalent with $L_j = 1$ because the y_{ji} values are integers and the lower bound only applies to periods t where $y_{ti} > 0$. The cases with one and two jobs are interesting because they may be encountered as subproblems when solving problems with higher n. Our algorithm for the decision problem with one job, for instance, is also called as a subroutine to decide the case with two jobs (see Appendices B and C). The results of our analysis are summarized in Table 2. Unless otherwise mentioned, in cases (1)-(4) the parameter H is considered to be constant, since typically $n > H$, whereas for cases (5) and (6) we have either one or two jobs, so H is then regarded as input.

3. Problem RLP-decision

We address the problem RLP-decision and study the six special cases presented in the previous section. For ease of exposition, we alternatively consider each job $j \in N$ as consisting of p_j joblets, where a joblet corresponds with the work performed by one worker in one period. Similarly, the available capacity in period t can be divided into c_t units, where each unit equates with one worker.

3.1. No time windows and no bound constraints

All jobs have the same time window $[0, H]$ and any number of available workers can be assigned to any job. We observe the following:

Lemma 1. A given instance of RLP-decision with the above restrictions is a yes instance if and only if $\sum_{j=1}^{n} p_j \leq \sum_{t=1}^{H} c_t$.

The proofs of all the lemmas are included in Appendix A. Lemma 1 remains valid even if each job must be executed without preemption.

Table 2	Summary of our results: ‘ordinary’ means NP-complete/hard in the ordinary sense, ‘strong’ means NP-complete/hard in the strong sense.			
Preemption	RLP-decision	RLP-scheduling	RLP-selection	
No constraints	Yes	$O(n)$	$O(n)$	Ordinary
	No	$O(n)$	$O(n)$	Ordinary
No bound constraints	Yes	$O(n \log n)$	$O(n \log n)$	Ordinary
	No	$O(n \log n)$	$O(n \log n)$	Ordinary
No lower bounds	Yes	$O(n \log n)$	$O(n \log n)$	Ordinary
	No	$O(n \log n)$	$O(n \log n)$	Ordinary
No upper bounds	Yes	Strong	Strong	Strong
	No	Strong	Strong	Strong
One job	Yes	$O(H \log H)$	$O(H \log H)$	$O(H \log H)$
	No	$O(H)$	$O(H)$	$O(H)$
Two jobs	Yes	Ordinary	Ordinary	Ordinary
	No	$O(H^2)$	$O(H^2)$	$O(H^2)$
3.2. No bound constraints

We now assume that jobs can have different time windows but there are no bound constraints. Therefore, the resulting problem is a generalization of the problem defined in Section 3.1. We propose Algorithm 1 to solve rlp-decision when there are no bound constraints.

Algorithm 1 rlp-decision without bound constraints.

1: compute an ordering \(\pi \) of the jobs in non-decreasing order of their deadline
2: for \(j = 1 \) to \(n \) do
3: schedule the joblets of job \(\pi[j] \) starting from period \(r_{\pi[j]} + 1 \);
 when a period is full, move to the next period
4: if all the jobs can be executed then return yes
5: else return no

Algorithm 1 is a modification of the earliest due-date rule (Pinedo, 2008), allowing a fraction of a job to be scheduled in one period, if necessary.

Lemma 2. Algorithm 1 solves rlp-decision without bound constraints in time \(O(n \log n) \).

Baptiste et al. (1999) obtain a comparable result based on a different reasoning. Algorithm 1 does not guarantee the execution of jobs without preemption, as illustrated by the following example. Consider an instance of rlp-decision without bound constraints consisting of two jobs that must be executed in five periods \((H = 5)\), each with capacity \(c_1 = 5 \) workers (for \(t = 1, \ldots, 5 \)), job 1 has \(r_1 = 0 \), \(d_1 = 5 \) and \(p_1 = 17 \), and job 2 is characterized by \(r_2 = 1 \), \(d_2 = 3 \) and \(p_2 = 8 \). Algorithm 1 schedules job 2 in periods 2–3, with five and three workers respectively, and executes job 1 in periods 1, 3, 4 and 5, with five, two, five and five workers respectively. Job 1 is preempted because it is executed in periods 1 and 3 but not in period 2. A schedule that executes both jobs without preemption, however, does exist: it executes job 2 in periods 2–3 with four workers in each period.

The next result shows that it is unlikely that there exists a polynomial-time algorithm to solve rlp-decision without bound constraints when each job must be executed without preemption. In fact, we show that if preemption is not allowed, then the problem is \(\text{np-complete in the strong sense} \) (Garey & Johnson, 1979). We prove this result using a reduction from sequencing with release times and deadlines, which is \(\text{np-complete in the strong sense} \) (Garey & Johnson, 1979, p. 236). The latter problem is defined as follows:

SEQUENCING WITH RELEASE TIMES AND DEADLINES

Instance: Set \(T \) of tasks and for each task \(t \in T \), a length \(\ell(t) \in \mathbb{Z}^+ \), a release time \(r(t) \in \mathbb{Z}_0^+ \), and a deadline \(d(t) \in \mathbb{Z}^+ \).

Question: Is there a one-processor schedule for \(T \) that satisfies the release-time constraints and meets all deadlines, i.e., a one-to-one function \(\sigma: T \rightarrow \mathbb{Z}_0^+ \), with \(\sigma(t) > r(t) \) implying \(\sigma(t) \geq \sigma(t') + \ell(t') \), such that, for all tasks \(t \in T \), \(\sigma(t) \geq r(t) \) and \(\sigma(t) + \ell(t) \leq d(t) \)?

We obtain the following complexity result.

Lemma 3. The problem rlp-decision without bound constraints where each job must be executed without preemption is \(\text{np-complete in the strong sense} \).

3.3. No lower bounds

The execution of each job is constrained only by its time window and the upper bound. Algorithm 1 can be modified to address this situation as well, if in line 3 the capacity of each period \(t \) is filled with \(\min\{\bar{u}_{\pi[t]} \cdot p_{\pi[t]} + c_t\} \) before moving to the next period.

Again, the resulting solution does not necessarily schedule jobs without preemption. When the latter restriction is imposed, the proof of Lemma 3 remains valid in order to show that rlp-decision without lower bounds and without preemption is \(\text{np-complete} \). We formalize this result in the next lemma.

Lemma 4. The problem rlp-decision without lower bounds where each job must be executed without preemption is \(\text{np-complete in the strong sense} \).

3.4. No upper bounds

This is the case when there are no upper-bound restrictions (only the available number of workers in each period). The problem rlp-decision with no upper bounds is a special case of the maximum flow problem with minimum quantities (Haugland, Elyat, & Hetland, 2011; Thielen & Westphal, 2013) because the associated network is bipartite. As a consequence, any positive result for the latter problem remains valid, but the negative results do not necessarily apply to rlp-decision without upper bounds.

Algorithm 2 to solve rlp-decision with no upper bounds.

Instance: A set \(A \) with two \(2m \) elements, and a size \(s(a) \in \mathbb{Z}^+ \) with \(\sum_{a \in A} s(a) = 2B \).

Question: Can \(A \) be partitioned into two disjoint sets \(A_1 \) and \(A_2 \) such that \(|A_1| = |A_2| = m \) and \(\sum_{a \in A_1} s(a) = B \)?

Lemma 5. The problem rlp-decision with no upper bounds is \(\text{np-complete} \) if there are two periods and all jobs are splittable.

Proof. Lemma 5 indicates that rlp-decision with no upper bounds is at least \(\text{np-complete in the ordinary sense} \), leaving open the possibility that the problem is even harder, for example \(\text{np-complete in the strong sense} \). Below, we present a pseudo-polynomial-time algorithm to solve the problem when there are exactly two periods, and we show that the problem effectively becomes \(\text{np-complete in the strong sense} \) when the number of periods is free.

Consider rlp-decision with two periods and no upper bounds. If \(\sum_{j \in J} p_j > c_1 + c_2 \), then the answer is no; otherwise we can call the following dynamic programming (DP) algorithm to obtain a decision. Without loss of generality, we assume that \(r_1 = 0 \) and \(d_1 = 2 \) for each job \(j \in N \). For ease of exposition, we add a dummy job 0 with \(r_0 = 0 \), \(d_0 = 2 \) and \(p_0 = 0 \). We use the following (Boolean) DP function:

\[F_k (\alpha_1, \alpha_2) = \begin{cases} 1, & \text{if jobs } 0, 1, \ldots, k \text{ can be executed with } \alpha_1 \text{ workers in period } t = 1, 2, \text{ otherwise.} \\ 0, & \text{otherwise.} \end{cases} \]

The initial condition of the recursion is given by \(F_0 (\alpha_1, \alpha_2) = 1 \) for all \(\alpha_1 \in \{0, 1, \ldots, c_1\} \) and \(\alpha_2 \in \{0, 1, \ldots, c_2\} \), and by \(F_k (\alpha_1, \alpha_2) = 0 \) whenever \(\alpha_1 < 0 \) or \(\alpha_2 < 0 \), for \(k = 0, 1, 2, \ldots, n \). The recursive relation is

\[F_k (\alpha_1, \alpha_2) = \max \{ F_{k-1} (\alpha_1 - \ell, \alpha_2 + \ell - p_k) : \ell \in \Delta_k \} \]

where \(\Delta_k = \{0, p_k\} \cup (\mathbb{N} \cap [1B_k - p_k - 1b_k]) \). If job \(k \) is not splittable, then the second part of the union is empty, and the job will be executed either exclusively in period 1 or exclusively in period 2. Splittable jobs may also be executed in both periods, dependent on the remaining capacity. The solution to rlp-decision with two periods and without upper bounds is obtained by verifying the value of \(F_n (c_1, c_2) \); if \(F_n (c_1, c_2) = 1 \), then we have a yes instance; otherwise we have a no instance.
The time complexity of the foregoing DP algorithm is \(O(nC^2P)\), where \(C = \max(c_1, c_2)\) and \(P = \max(p_1, \ldots, p_n)\). This can be seen as follows. We need to compute \(O(n \cdot C \cdot C)\) values, namely one for each combination of \(k, c_1\) and \(c_2\). For each of these \(O(nC^2)\) values, the maximum operator pertains to \(|\Delta_k|\) possibilities, with \(|\Delta_k| = O(P)\) (because all values in \(\Delta_k\) are in \([0, p_n]\)). Therefore, \(RLP\text{-DECISION}\) with two periods can be solved in pseudo-polynomial time. This DP recursion can be generalized for any constant \(H\): the total number of partitions \((\ell_1, \ell_2, \ldots, \ell_H)\) of \(p_k\), with \(\sum_{i=1}^H \ell_i = p_k\), is then constant in the number of jobs (it is upper-bounded by \(O(P^H)\)), hence the resulting algorithm will still run in pseudo-polynomial time.

When the number of periods is free (\(H\) is part of the input), we show that \(RLP\text{-DECISION}\) without upper bounds is \(NP\)-complete in the strong sense. The proof uses a reduction from 3-PARTITION, which is defined as follows (Garey & Johnson, 1979):

3-PARTITION

Instance: A set \(A\) of \(3m\) elements, a bound \(B \in \mathbb{Z}^+\), and a size \(s(a) \in \mathbb{Z}^+\) for each \(a \in A\) such that \(\frac{2}{3} < s(a) < \frac{4}{3}\) and \(\sum_{a \in A} s(a) = mB\).

Question: Can \(A\) be partitioned into \(m\) disjoint sets \(A_1, A_2, \ldots, A_m\) in such a way that, for \(1 \leq i \leq m\), \(\sum_{a \in A_i} s(a) = B\).

Lemma 6. The problem \(RLP\text{-DECISION}\) with no upper bounds is \(NP\)-complete in the strong sense, even if all jobs are splittable.

We close this section by making the following two observations. First, all the results presented in this section remain valid when all jobs have the same time window. Second, the DP algorithm developed for instances with two (or more, but a constant number of) periods, as well as Lemma 5, remain valid even if each job must be executed without preemption. The negative result in Lemma 3 also directly transfers, which leads us to the conclusion that \(RLP\text{-DECISION}\) without upper bounds is \(NP\)-complete in the strong sense even if each job must be executed without preemption.

3.5. There is only one job

We present Algorithm 2 to solve \(RLP\text{-DECISION}\) with a single job. In the description we omit the subscript referring to the job. Without loss of generality, we assume that the release date is \(r = 0\) and the deadline \(d = H\).

Algorithm 2 \(RLP\text{-DECISION}\) with a single job.

1. sort periods in non-increasing order of the available number of workers
2. if \(p > \sum_{t=1}^H \min \{c_t, ub\}\) then return no
3. if \([LB \cdot H < p]\) then return yes
4. else
5. find the largest integer \(H'\) such that \([LB \cdot H' \leq p]\)
6. if \(p \leq \sum_{t=1}^{H'} \min \{c_t, ub\}\) then return yes
7. else return no

Lemma 7. Algorithm 2 solves \(RLP\text{-DECISION}\) with a single job in time \(O(H \log H)\).

In Appendix B, we present a modified version of Algorithm 2 that solves \(RLP\text{-DECISION}\) with a single job to be executed without preemption in time \(O(H)\).

3.6. There are two jobs

We establish the following complexity result for instances of \(RLP\text{-DECISION}\) that consist of two jobs.

Lemma 8. \(RLP\text{-DECISION}\) with two jobs is \(NP\)-complete, even if the two jobs are identical.

The result of Lemma 8 also leaves open the possibility that the problem is \(NP\)-complete in the strong sense. We discard this option by presenting a pseudo-polynomial-time DP algorithm to solve instances of \(RLP\text{-DECISION}\) that consist of two jobs. Note that Algorithm 2 can be used for each job individually to identify possible no instances. For ease of exposition, we present a DP algorithm for cases where the two jobs have the same time window. We define the Boolean value function

\[F_t(\beta_1, \beta_2) = \begin{cases} 1 & \text{if a schedule exists that assigns an exact total of } \beta_1 \text{ workers to job } i (i=1,2) \\ 0 & \text{otherwise} \end{cases} \]

for periods \(1, \ldots, t\).

The initial condition is \(F_1(\beta_1, \beta_2) = 1\) if \(\beta_1 + \beta_2 \leq c_1\), otherwise \(F_1(\beta_1, \beta_2) = 0\). The recursive relation is

\[F_t(\beta_1, \beta_2) = \max\{F_{t-1}(\beta_1 - \ell_t, \beta_2), 0\} \]

where \(\ell_t\) is imposed, the problem \(RLP\text{-DECISION}\) runs in time \(O(n^2 P^2 H)\), where \(P = \max(p_1, p_2)\). This algorithm can easily be generalized to instances with a fixed number \(k\) of jobs; the running time will then be \(O(n^2 k P^2 H)\).

We now turn our attention to the problem \(RLP\text{-SCHEDULING}\). As mentioned earlier, by solving \(RLP\text{-SCHEDULING}\) we can infer the solution to \(RLP\text{-DECISION}\), which implies that all negative results established in Section 3 are also valid for \(RLP\text{-SCHEDULING}\) under the same conditions.

4. Problem \(RLP\text{-SCHEDULING}\)

4.1. No time windows and no bound constraints

We obtain the following result, which is an adaptation of Lemma 1.

Lemma 9. For a given instance of \(RLP\text{-SCHEDULING}\) with the above restrictions, the quantity \(\max(0, \sum_{j=1}^n p_j - \sum_{t=1}^H c_t)\) represents the optimal objective value.

A schedule that achieves the objective value of \(\max(0, \sum_{j=1}^n p_j - \sum_{t=1}^H c_t)\) is obtained by executing jobs (in any order) from the first period to the last-but-one period without external workers; in the last period all the remaining jobs are scheduled, which requires \(\max(0, \sum_{j=1}^n p_j - \sum_{t=1}^H c_t)\) external workers. The lemma remains valid even with a non-preemption constraint.

4.2. No bound constraints

We present Algorithm 3, which is an adaptation of Algorithm 1, to solve \(RLP\text{-SCHEDULING}\) when there are no bound constraints.

A proof of the following result can follow similar reasoning as the proof of Lemma 2.

Lemma 10. Algorithm 3 solves the problem \(RLP\text{-SCHEDULING}\) without bound constraints in time \(O(n \log n)\).

In the same way as Algorithm 1, Algorithm 3 does not guarantee the execution of jobs without preemption. When this restriction is imposed, the problem \(RLP\text{-SCHEDULING}\) without bound constraints becomes \(NP\)-hard in the strong sense, as a consequence of Lemma 3. Furthermore, we establish the following non-approximability result.
Algorithm 4 RLP-scheduling with a single job.
1: sort periods in non-increasing order of the available number of workers
2: if \(p > H \cdot \text{ub} \) then return the instance is infeasible
3: if \(p > \sum_{t=1}^{H} \min \{ c_t, \text{ub} \} \) then return \(p - \sum_{t=1}^{H} \min \{ c_t, \text{ub} \} \)
4: if \(\text{lb} \cdot H \leq p \) then return 0
5: else
6: find the largest integer \(H' \) such that \(\text{lb} \cdot H' \leq p \)
7: if \(p \leq \sum_{t=1}^{H'} \min \{ c_t, \text{ub} \} \) then return 0
8: else if \(p > H' \cdot \text{ub} \) then return the instance is infeasible
9: else return \(p - \sum_{t=1}^{H'} \min \{ c_t, \text{ub} \} \)

Lemma 13. Algorithm 4 solves the problem RLP-scheduling with a single job in time \(O(H\log H) \).

In Appendix D, we present a modified version of Algorithm 4 that runs in time \(O(H) \) to solve the problem RLP-scheduling with a single job to be executed without preemption.

4.6. There are two jobs

A consequence of Lemma 8 is that the problem RLP-scheduling with two jobs is \(\text{NP} \)-hard, even if the two jobs are identical. We now present a DP algorithm to solve instances of RLP-scheduling with two jobs. Without loss of generality, we assume that the two jobs have the same time window. We define the value function \(F_i(\beta_1, \beta_2) \) as the number of additional worker-periods needed when a total of \(\beta_i \) workers are assigned to job \(i \) \((i = 1, 2)\) during periods 1, …, \(t \). The initial condition is
\[
F_1(\beta_1, \beta_2) = \max \{0, \beta_1 + \beta_2 - c_1\} \\
F_2(\beta_1, \beta_2) = \max \{0, \beta_1 + \beta_2 - c_2\}
\]
and \(F_1(\beta_1, \beta_2) = +\infty \) otherwise. The recursive relation is
\[
F_i(\beta_1, \beta_2) = \min \{\max \{0, \ell_1 + \ell_2 - c_j\} + F_{i-1}(\beta_1 - \ell_1, \beta_2 - \ell_2) : \ell_j \in \{0, \beta_1, \beta_1 + 1, \ldots, \text{ub} \} \}
\]
The optimal objective value for an instance of RLP-scheduling with two jobs is \(F_2(p_1, p_2) \); if \(F_2(p_1, p_2) = +\infty \), then the instance is infeasible. The time complexity of this algorithm is \(O(p^4 H) \), where \(p = \max \{p_1, p_2\} \). As in Section 3.6, this algorithm can be extended to run in \(O(p^2 H) \) time for any fixed number of jobs \(k \).

We also establish the following non-approximation result for this problem.

Lemma 14. Unless \(P = \text{NP} \), the problem RLP-scheduling with two jobs does not admit an approximation algorithm.

When the two jobs must be executed without preemption, Algorithm 7 can be modified to solve the problem in time \(O(H^3) \).

5. Problem RLP-selection

As in Section 4, we observe that by solving RLP-selection, we can infer the solution to RLP-decision. As a consequence, all negative results established in Section 3 remain valid for the problem RLP-selection under the same conditions.

5.1. No time windows and no bound constraints

Unlike the problems RLP-decision and RLP-scheduling, which under this condition are solved in linear time, the next result shows that RLP-selection is equivalent to the classic 0/1 knapsack problem.
Lemma 15. The problem RLP-SELECTION is equivalent to the 0/1 knapsack problem when there are no time windows and no bound constraints, even if there is only one period.

The problem RLP-SELECTION without time windows and without bound constraints is therefore NP-hard in the ordinary sense. Furthermore, all known exact and approximation algorithms for knapsack problems are also valid for this special case of RLP-SELECTION (we refer the reader to the comprehensive handbook by Kellerer, Pferschy, and Pisinger (2004) for an overview of such algorithms). All these results remain valid even if each job must be executed without preemption.

5.2. No bound constraints

As this case is a generalization of the one in Section 5.1, we infer that the problem RLP-SELECTION without bound constraints is at least NP-hard in the ordinary sense, even if there is only one period. If H = 1, then the problem RLP-SELECTION without bound constraints is equivalent to the knapsack problem, but when H > 1 this no longer holds, nor is the problem then equivalent to the classic multiple knapsack problem, since this variant of RLP-SELECTION has time windows and jobs can be scheduled in more than one time period. We propose a standard DP algorithm for this case. We assume that jobs are already sorted in non-increasing order of their deadlines; this can be done in time O(n log n).

For ease of exposition, we add a dummy job 0 with 0 ≥ 1 and 0 = 0. In this way, there is always an optimal solution that contains job 0. We use the following value function:

\[F_k(\alpha_1, \ldots, \alpha_H) \equiv \text{the maximum revenue obtained by considering jobs } [0, 1, \ldots, k] \text{ and using } \alpha_i \geq 0 \text{ workers in period } t. \]

The initial condition is \(F_0(\alpha_1, \ldots, \alpha_H) = 0 \) for \(\alpha_i = 0, 1, \ldots, c_i \), and the recursive relation is formulated as follows, where the values \(\bar{\alpha}_t \) are the output of Algorithm 5:

\[
F_k(\alpha_1, \ldots, \alpha_H) = \begin{cases}
F_{k-1}(\alpha_1, \ldots, \alpha_H) & \text{if } \sum_{t=1}^{k} \alpha_t < p_k, \\
\max\{F_{k-1}(\alpha_1, \ldots, \alpha_H), Q_k + F_{k-1}(\bar{\alpha}_1, \ldots, \alpha_H)\} & \text{otherwise}.
\end{cases}
\]

The optimal objective value is \(F_k(c_1, \ldots, c_H) \). Note that the jobs are indexed in non-increasing order of deadline, and that the DP algorithm actually schedules the jobs in reverse order. Algorithm 5 avoids having to evaluate all possible assignments of the \(p_k \) jobs in the time window of job \(k \), and is based on the result obtained in Section 3.2 that Algorithm 1 produces a feasible schedule for the decision version of this problem: the workload of input job \(k \) is scheduled as early as possible within its time window conditional on \((c_t - \alpha_t) \) resource units already being allocated to jobs \(k + 1, \ldots, n \) (\(t = 1, \ldots, H \)) when computing \(F_k(\alpha_1, \ldots, \alpha_H) \).

Algorithm 5 Compute \((\bar{\alpha}_1, \bar{\alpha}_2, \ldots, \bar{\alpha}_H) \).

Input: vector \((c_1, c_2, \ldots, c_H)\) and job \(k \)

Output: vector \((\bar{c}_1, \bar{c}_2, \ldots, \bar{c}_H)\)

1: \(t = 0 \text{ and } \Delta = p_k \)
2: \(\text{while } t \leq H \text{ do} \)
3: \(\text{if } k \neq [k + 1, \ldots, \bar{d}_k] \text{ then } \bar{\alpha}_t = \alpha_t \)
4: \(\text{else} \)
5: \(\bar{\alpha}_t = \max\{\alpha_t - \Delta, 0\} \)
6: \(\Delta = \max\{\Delta - \alpha_t, 0\} \)
7: \(\text{end if} \)
8: \(t \leftarrow t + 1 \)

The time complexity of this DP procedure is \(O(C n + n \log n) \), where \(C = \prod_{t=1}^{H} c_t \), and is thus pseudo-polynomial.

When jobs must be executed without preemption, we establish the following non-approximability result.

Lemma 16. Unless \(P = NP \), the problem RLP-SELECTION without bound constraints and without preemption does not admit an FPTAS.

5.3. No lower bounds

The problem RLP-SELECTION without lower bounds is also a generalization of the problem studied in Section 5.1, and so it is at least NP-hard in the ordinary sense, even if there is only one period. When there is exactly one period, the problem is equivalent to the knapsack problem (by eliminating the jobs that do not satisfy the lower bounds). When the number of periods \(H > 1 \), the DP algorithm proposed in Section 5.2 can be modified to solve this problem, with the necessary changes described in Section 3.2 for Algorithm 1 applied to Algorithm 5. Again, we observe that without preemption, the inclusion of non-trivial upper bounds does not essentially make the problem more difficult, in contrast to lower bounds (see Section 5.4).

We close this section by noting that with a non-preemption constraint, RLP-SELECTION becomes NP-hard in the strong sense; hence it does not admit an FPTAS unless \(P = NP \).

5.4. No upper bounds

Lemma 5 implies that RLP-SELECTION without upper bounds is NP-hard, even if there are only two periods and all jobs are splittable. Note that with only one period, this problem is equivalent to the knapsack problem, and can therefore be solved by any known knapsack algorithm.

We now consider the case when there is more than one period. The DP algorithm proposed in Section 5.2 can be modified to solve this problem by examining all possible \(\bar{\alpha}_t \) at each recursion. For simplicity, we present the DP algorithm for two periods. We also add a dummy job 0 with \(d_0 = d_1, t_0 = t_1, p_0 = 0 = q_0 = 0 \). We use the DP value function \(F_k(\alpha_1, \alpha_2) \), which represents the maximum revenue that can be generated by considering jobs \([0, 1, \ldots, k] \) and \(\alpha_t \) workers in period \(t = 1, 2 \). The initial condition of the DP recursion is \(F_0(\alpha_1, \alpha_2) = 0 \) for \(\alpha_1 = 0, 1, \ldots, c_1 = 0, 1, \ldots, c_2 \), and \(F_0(\alpha_1, \alpha_2) = -\infty \) if \(\alpha_1 < 0 \) or \(\alpha_2 < 0 \). The recursive relation is as follows: if \(\alpha_1 + \alpha_2 < p_k \), then \(F_k(\alpha_1, \alpha_2) = F_{k-1}(\alpha_1, \alpha_2) \); otherwise, \(F_k(\alpha_1, \alpha_2) = \max\{F_{k-1}(\alpha_1, \alpha_2), Q_k + F_{k-1}(\bar{\alpha}_1, \alpha_2 - p_k)\} \) if \(\bar{r}_k, \bar{d}_k \in [0, 1] \), \(Q_k + F_{k-1}(\alpha_1 - \ell, \alpha_2 + \ell - p_k) \) if \(\bar{r}_k = 0 \) and \(\bar{d}_k = 2 \).

\[
F_k(\alpha_1, \alpha_2) = \begin{cases}
F_{k-1}(\alpha_1, \alpha_2) & \text{if } \bar{r}_k, \bar{d}_k \in [0, 1] \text{,} \\
Q_k + F_{k-1}(\alpha_1 - \ell, \alpha_2 + \ell - p_k) & \text{if } \bar{r}_k = 0 \text{ and } \bar{d}_k = 2 \text{,} \\
\end{cases}
\]

where \(\Delta_k = [0, p_k] \cup (N \cap [L_k, p_k - L_k]) \). The optimal objective value is given by \(F_{\bar{c}_1, \bar{c}_2} \). The time complexity of this DP algorithm is \(O(nC^2P) \), where \(C = \max(c_1, c_2) \) and \(P \) is the largest work content. By the same reasoning as in Section 3.4, this DP recursion can be generalized for any constant \(H \), still leading to a pseudo-polynomial-time algorithm.

Since the knapsack problem admits an FPTAS, we can conclude that RLP-SELECTION without upper bounds also admits an FPTAS when \(H = 1 \). Conversely, we can establish the following non-approximation result when \(H > 1 \).

Lemma 17. Unless \(P = NP \), the problem RLP-SELECTION with two periods and no upper bounds does not admit an FPTAS.

When the non-preemption constraint is included into the problem statement, both the positive and the negative results of this section can be carried over.
5.5. There is only one job

There are two options in this case: the selection (and execution) of the job or no selection. The problem can be solved by an adapted version of Algorithm 2, where in lines 3 and 6 we return Q (the revenue of the unique job), and in lines 2 and 7 we return 0 (meaning that the job is not selected). By applying similar modifications to Algorithm 6, we can solve RLP-selection with only one job and without preemption.

5.6. There are two jobs

Lemma 8 implies that RLP-selection with two jobs is NP-hard, even if the two jobs are identical. We now describe an algorithm to solve this problem. We refer to the two jobs as job 1 and job 2. Four options are possible: (1) none of the two jobs is selected; (2) job 1 is selected and not job 2; (3) job 2 is selected and not job 1; and (4) both job 1 and job 2 are executed. The first option results in an objective value of zero. The second option yields an objective value (4) both job 1 and job 2 are executed. The described procedure also remains valid even if the two jobs are identical. We now describe an algorithm to solve RLP-selection with two jobs without preemption.

5.6. There are two jobs

Lemma 8 implies that RLP-selection with two jobs is NP-hard, even if the two jobs are identical. We now describe an algorithm to solve this problem. We refer to the two jobs as job 1 and job 2. Four options are possible: (1) none of the two jobs is selected; (2) job 1 is selected and not job 2; (3) job 2 is selected and not job 1; and (4) both job 1 and job 2 are executed. The first option results in an objective value of zero. The second option yields an objective value of either zero or \(Q_1\), and the third one a value of either zero or \(Q_2\), which can be determined via the procedure described in Section 5.5.

The last option, which is considered only if option (2) leads to \(Q_1\) and option (3) to \(Q_2\), generates a value of either zero or \(Q_1 + Q_2\) and can be evaluated with the DP algorithm described for RLP-decision with two jobs. Since we have four possibilities, and since each case requires an algorithm that is at most pseudo-polynomial, we conclude that RLP-selection with two jobs can be solved in pseudo-polynomial time. This result can be generalized for any fixed number \(k\) of jobs. The described procedure also remains valid even if each job must be executed without preemption.

6. Conclusions

In this paper, we have defined a generic resource scheduling problem inspired by tactical capacity planning in project-based environments. The direct contributions of this study are mainly theoretical: we contribute to a better understanding of the problem by presenting a structured complexity analysis of the underlying combinatorial optimization problem. In the process, we have observed a number of links with existing work in equipment maintenance and MTO and ETO planning, as well as operational and multiprocessor scheduling. Our results are useful to further the understanding of the structural properties of resource loading, and the proposed algorithms can be implemented as a subroutine within any framework for solving practical resource loading problems.

Further work in this area should focus on incorporating practical aspects of specific planning cases. In one particular aircraft line maintenance problem, for instance, we learned that the intensities were required to be monotone, meaning that a job is executed with either non-decreasing or non-increasing intensities. This would mean, for instance, that one cannot start a job with one person, then continue with two persons, and finish again with one person. This monotonicity constraint also implies that the jobs are executed without preemption. Related studies have identified similar monotonicity constraints as dominant properties (see Hendel et al., 2014; Sadykov, 2012); hence this aspect certainly deserves further research. Resource loading as described in this paper can also be seen as a variant of the multiple knapsack problem in which items can be spread across different knapsacks. The bin packing problem is closely related to the multiple knapsack problem, and the possibility of splitting jobs across multiple bins has also been the subject of recent research (see Casazza & Ceselli, 2014). This area might also present a number of interesting synergies to be further explored.

Acknowledgments

We thank two anonymous reviewers for their constructive comments; in particular we are grateful to Reviewer #1 for pointing out an omission in the determination of the time complexity of some of the algorithms.

The project leading to these results has been partially supported by the bilateral scientific cooperation project BIL10/10 between KULeuven (Belgium) and Tsinghua University (China). Fabrice Talla Nobibon gratefully acknowledges the Fund for Scientific Research - Flanders (FWO-Vlaanderen) for his postdoctoral fellowship. Zhenbo Wang also received support from project NSFC no. 11371216.

Appendix A. Proofs

Proof (Lemma 1). Each joblet (of any job) can be assigned to any worker in any period; such assignment is feasible if and only if there is enough capacity. This condition is exactly the inequality \(\sum_{t=1}^{N} B_t \leq \sum_{j=1}^{m} c_j\).

Proof (Lemma 2). For ease of exposition, we assume that jobs are already indexed in non-decreasing order of their deadline; this can be done in \(O(n \log n)\), where \(n\) is the number of jobs (Cormen, Leiserson, Rivest, & Stein, 2005).

On the one hand, if Algorithm 1 outputs yes, then the computed schedule is such that each job is executed within its time window and the capacity of each period is respected; in other words, all the constraints of RLP-decision are satisfied. On the other hand, suppose that we have a yes instance of RLP-decision without bound constraints and that we are given a feasible schedule. Consider the first job (with the smallest deadline) and its release time \(r_1\). Move all the joblets of job 1 to period \(r_1 + 1\), and if that period is not enough to completely schedule job 1, then use the next period. Repeat this until job 1 is completely executed. Note that the obtained schedule is feasible because all the jobs (or joblets) that are moved backward have a deadline greater than or equal to that of job 1. This procedure is successively repeated for jobs 2, ..., \(n\), without moving jobs (or joblets of jobs) with smaller indices that are already re-scheduled. The final schedule is feasible because we started with a feasible schedule. Furthermore, the latter is exactly the same schedule that is output by Algorithm 1.

As a consequence, Algorithm 1 returns yes for this instance.

The time complexity of Algorithm 1 is dominated by the sorting in line 1; therefore its complexity is \(O(n \log n)\).

Proof (Lemma 3). Clearly, the problem RLP-decision with without bound constraints belongs to the class NP. Given an arbitrary instance of SEQUENCING WITH RELEASE TIMES AND DEADLINES, we construct an instance of RLP-decision with \(H = \max_{i \in I} d(i)\) periods, each period with exactly one worker. There are \(|T|\) jobs and each job corresponds with a task in \(T\) so that job \(j\) has processing time \(p_j = c(j)\) and time window \([r_j, d_j] = [r(j), d(j)]\). Note that this construction can be done in polynomial time. Because each job must be executed without preemption and each period has exactly one worker, it follows that there exists a feasible schedule for the instance of sequencing with release times and deadlines if and only if the constructed instance of RLP-decision without bound constraints is a yes instance.

Proof (Lemma 5). The problem RLP-decision with no upper bounds clearly belongs to the class NP. Given an arbitrary instance of PARTITION, we build an instance of RLP-decision with two periods (\(H = 2\)). There are \(c_1 = mB^3 + B^2 - m\) workers available in the first period and \(c_2 = 3mB^3 + 3B^2 - m\) workers in the second one. There are \(2m\) jobs, and each job corresponds with an element in \(A\) so that job \(j\) has the processing time \(p_j = 2B^3 + 2s(j)B - 1\) and \(L_{B_j} = B^3 + s(j)B - 1\). Furthermore, all the jobs have the same time window \([0, 2]\). This construction can be done in polynomial time. Note that all the jobs are splittable, and that there is only one way to split job \(j\), i.e. into a smaller part requiring \(p_j = B^3 + s(j)B - 1\) workers, which we refer to as \(j_s\), and a larger part \(j_l\) with \(p_j = B^3 + s(j)B\) workers. We now argue that we have a yes instance of
PARTITION if and only if the instance of RLP-DECISION is also a yes instance.

On the one hand, if we have a yes instance of PARTITION, then we construct a feasible schedule as follows: all the jobs corresponding with elements in A_1 are split into two parts. The smaller parts are scheduled in the first period, whereas the larger parts of these jobs and the jobs corresponding with elements in A_2 are all scheduled in the second period. It can be verified that this schedule is feasible for the instance of RLP-DECISION. On the other hand, suppose that we have a yes instance of RLP-DECISION. The number of workers required to execute all jobs is equal to the sum of the capacities of the two periods, so the capacity of each period is fully used. Let us consider a feasible schedule and denote by F the set of jobs fully executed in the first period and by S (respectively L) the set of split jobs whose smaller (respectively larger) part is executed in the first period. The capacity usage (and availability) in period 1 is then:

$$2|F|B_1^3 + 2B \sum_{j \in F} s(j) - |F| + |S|B_1^3 + B \sum_{j \in S} s(j) - |S| + |L|B_1^3 + B \sum_{j \in L} s(j) = mB_1^3 + B^2 - m. \quad (A.1)$$

Without loss generality, we assume that B is sufficiently larger than m so that the coefficients of B^3 and the constant terms in both sides of Eq. (A.1) coincide. It follows that

$$2|F| + |S| + |L| = m, \quad (A.2a)$$

and

$$|F| + |S| = m. \quad (A.2b)$$

By substituting (A.2b) into (A.2a), we obtain that $|F| + |L| = 0$, which implies that $|F| = |L| = 0$ and $|S| = m$. This means that exactly m smaller parts of split jobs are executed in the first period. By comparing the coefficients of B^3 in Eq. (A.1) we obtain that $\sum_{j \in S} s(j) = B$. We then define A_1 as follows: an element $a \in A_1$ if and only if the smaller part of the corresponding job is scheduled in the first period. The remaining m jobs (that are not split) belong to A_2. Clearly, we have $|A_1| = |A_2| = m$. Furthermore, since $\sum_{a \in A_1} s(a) = B$ we conclude that A_1 and A_2 constitute a feasible partition of A. This completes the proof of Lemma 5.

Proof (Lemma 6). Given an arbitrary instance of 3-PARTITION, we construct an instance of RLP-DECISION with $H = m + 1$ periods. The first m periods have $3B^3 + B^2 - 3$ workers available and the last period $(m + 1)$ has $3mB^3 + mB^2$ workers. There are $3m$ jobs, each job corresponding with an element a so that j has the processing time of $p_j = 2B^3 + 2s(j)B - 1$ and the lower bound of $lb_j = B^3 + s(j)B - 1$. All jobs have the same time window $[0, H]$. As in the proof of Lemma 5, these jobs are all splittable and there is only one way to split each job j, with a smaller part j_x requiring $p_{j_x} = B^3 + s(j)B - 1$ workers and a larger part j_y with $p_{j_y} = B^3 + s(j)B$ workers. This construction can be completed in polynomial time. We now argue that the instance of 3-PARTITION is a yes instance if and only if the constructed instance of RLP-DECISION is also a yes instance.

On the one hand, if we have a yes instance of 3-PARTITION, then there exists a feasible schedule for the instance RLP-DECISION. Indeed, it suffices to execute in period t the smaller part of the three jobs corresponding with elements in A_t, for $t = 1, \ldots, m$; and then execute the larger parts of all the jobs in the last period.

On the other hand, let us suppose that we have a feasible schedule for the constructed instance of RLP-DECISION. The number of workers required to execute all jobs is equal to the sum of the capacities of all periods, so we infer that the capacity of each period is fully used. We denote by P the set of jobs completely executed in the last period $(m + 1)$, and by S (respectively L) the set of jobs for which only the smaller (respectively larger) part is executed in period $(m + 1)$. The capacity usage in period $(m + 1)$ is then:

$$2|P|B_1^3 + 2B \sum_{j \in P} s(j) - |P| + |S|B_1^3 + B \sum_{j \in S} s(j) - |S| + |P|B_1^3 + B \sum_{j \in P} s(j) = 3mB^3 + mB^2. \quad (A.3)$$

It follows that

$$2|P| + |S| - |P| = 3m, \quad (A.4a)$$

and

$$|F| + |S| = 0. \quad (A.4b)$$

which implies that $|F| = |S| = m$ and $|P| = 3m$. This observation indicates that all jobs are split (into two parts), and that the larger parts are all scheduled in period $m + 1$, whereas the smaller parts are all executed in the first m periods. Each of these first m periods is then assigned exactly three smaller parts, which fully occupy the available workers. We now construct a partition of A by defining A_t ($t = 1, \ldots, m$) to contain the three elements for which the smaller parts of their corresponding jobs are scheduled in period t. This completes the proof of Lemma 6.

Proof (Lemma 8). We prove this result using a reduction from the problem PARTITION defined earlier. Given an arbitrary instance of PARTITION, we build an instance of RLP-DECISION with two identical jobs ($n = 2$) as follows. Each job j ($j = 1, 2$) has the workload $p_j = (2m + 1)B$, $lb_j = 2B + \min_{a \in A} s(a)$ and $ub_j = 2B + \max_{a \in A} s(a)$. There are $2m$ periods with $c_j = 2B + s(t)$ workers available in period t, for $t = 1, \ldots, 2m$. The lower bound implies that in each period we can execute only one job. Finally, the time window of each job is $[0, 2m]$. This construction can be completed in polynomial time. We now argue that the instance of PARTITION is a yes instance if and only if the instance of RLP-DECISION is also a yes instance.

On the one hand, if we have a yes instance of PARTITION, then the set A can be partitioned into two subsets A_1 and A_2 such that $\sum_{a \in A_1} s(a) = B$. For each period t, if $t \in A_1$ then we assign $2B + s(t)$ workers to job 1 and 0 workers to job 2 in that period; otherwise, we assign $2B + s(t)$ workers to job 2 and 0 workers to job 1 in that period. The schedule achieves a feasible execution of both jobs and we conclude that the instance of RLP-DECISION is a yes instance. On the other hand, if we have a yes instance of RLP-DECISION, then by defining $A_t = \{ j : \text{job } j \text{ is executed in period } t \}$, we conclude that the instance of PARTITION is a yes instance.

Proof (Lemma 11). Let us consider the reduction from SEQUENCING WITH RELEASE TIMES AND DEADLINES constructed in the proof of Lemma 5. We have a yes instance of SEQUENCING with release times and deadlines if and only if the constructed instance of RLP-DECISION has an optimal objective value of 0. As a consequence, if there exists an approximation algorithm for the latter problem, then it can be used to solve the former. In combination with the fact that SEQUENCING WITH RELEASE TIMES AND DEADLINES is NP-complete, the lemma can then be seen to hold.

Proof (Lemma 12). Consider the reduction from PARTITION constructed in the proof of Lemma 5. We have a yes instance of PARTITION if and only if the constructed instance of RLP-DECISION has an optimal objective value of 0. Therefore, an approximation algorithm for RLP-DECISION would correctly decide each instance of PARTITION.

Proof (Lemma 14). The proof of this result is similar to that of Lemma 12, but then with reference to Lemma 8 instead of Lemma 5.
Proof (Lemma 15). Given an instance of RLP-selection with the above restrictions, we build an instance of the knapsack problem as follows: the capacity of the knapsack is \(B = \sum_{t=1}^{H} c_t \), and there are \(n \) items. Item \(j \) has profit \(q_j \) and weight \(p_j \). Clearly, an optimal solution to this instance of the knapsack problem corresponds with an optimal solution to the instance of RLP-selection and vice versa. Moreover, an instance of the knapsack problem can be seen as an instance of RLP-selection with a single period. This completes the proof. \(\square \)

Proof (Lemma 16). We still consider the reduction from sequencing with release times and deadlines constructed in the proof of Lemma 3, and in addition each job \(j \in \mathcal{J} \) has release time \(Q_j \). We have a yes instance of sequencing with release times and deadlines, then the constructed instance of RLP-selection has an optimal objective value of \(n \); otherwise, it is at most \(n-1 \). Therefore, by taking \(\epsilon = \frac{1}{n+1} \) any FPTAS can be used to distinguish between these two situations in polynomial time. \(\square \)

Proof (Lemma 17). We consider the reduction from partition set up in the proof of Lemma 5, where in addition each job \(j \in \mathcal{J} \) has revenue \(R_j \). If we have a yes instance of partition, then the optimal objective value is \(2m \); otherwise, it is at most \(2m - 1 \). Therefore, an FPTAS for RLP-selection with two periods and no upper bounds can be used to distinguish between these two situations in polynomial time. \(\square \)

Appendix B. RLP-decision with a single non-preemptible job

We present Algorithm 6 for solving RLP-decision with a single job that must be executed without preemption. Without loss of generality, we assume \(c_t \geq lb \) for all \(t \in H \).

Algorithm 6 RLP-decision with a single non-preemptible job.

1: if \(p > \sum_{t=1}^{H} \min\{c_t, ub\} \) then return no
2: if \(lb \cdot H \leq p \) then return yes
3: else
4: for \(t = 1 \) to \(H \) do
5: find the largest integer \(H_t \) with \(t \leq H_t \leq H \) such that \(lb \cdot (H_t - t + 1) \leq p \).
6: if \(p \leq \sum_{t=1}^{H_t} \min\{c_t, ub\} \) then return yes
7: return no

By observing that \(H_t \) in line 5 can be obtained as \(\min\{H, \lfloor \frac{p}{lb} \rfloor + t - 1\} \) (assuming \(p \geq lb \)), and with a careful monitoring of the sums in line 6, the following result can be seen to hold.

Lemma 18. Algorithm 6 solves the problem RLP-decision with a single job that must be executed without preemption in time \(O(H) \).

Appendix C. RLP-decision with two non-preemptible jobs

We use \(t_1 \) and \(t_2 \) (respectively \(t'_1 \) and \(t'_2 \)) to refer to the first and the last period in which job 1 (respectively job 2) is executed. Note that for a feasible schedule, we have \(r_1 \leq t_1 \leq t'_1 \leq d_1 \) and \(r_2 \leq t_2 \leq t'_2 \leq d_2 \). Without loss of generality, we assume that \(r_1 \leq r_2 \). We present Algorithm 7 for solving RLP-decision with two jobs that must be executed without preemption, and we formulate the following result.

Lemma 19. Algorithm 7 solves the problem RLP-decision with two non-preemptible jobs in time \(O(H^2) \).

Proof. The correctness of Algorithm 7 is guaranteed by the complete enumeration of all possible cases and its time complexity results from the nested loops. \(\square \)

Algorithm 7 RLP-decision with two non-preemptible jobs.

1: run Algorithm 6 for job 1 and if it outputs no then return no
2: run Algorithm 6 for job 2 and if it outputs no then return no
3: for \(t'_1 = r_1 + 1 \) to \(d_1 \) do
4: for \(t'_2 = t'_1 \) to \(d_1 \) do
5: if \(lb_1 \cdot (t'_1 - t'_1 + 1) \leq p_1 \leq \sum_{t=1}^{t'_1} \min\{c_{t_1}, ub_1\} \) then
6: for \(t'_2 = r_2 + 1 \) to \(d_2 \) do
7: for \(t'_2 = t'_2 \) to \(d_2 \) do
8: if \(lb_2 \cdot (t'_2 - t'_2 + 1) \leq p_2 \leq \sum_{t=1}^{t'_2} \min\{c_{t_2}, ub_2\} \) then
9: if \(t'_2 < t'_2 \) or \(t'_2 < t'_2 \) then return yes
10: else if \(t'_2 < t'_2 \) and \(c_t \geq lb_1 + lb_2 \) for \(t_1 \leq t \leq \sum_{t=1}^{t'_1} \min\{c_{t_1}, c_{t_2}\} \) then
11: \(A_1 = \sum_{t=1}^{t'_1-1} \min\{c_{t_1}, ub_1\} \)
12: \(A_2 = \sum_{t=1}^{t'_2-1} \min\{c_{t_2}, ub_1, ub_2\} \)
13: \(A_3 = \sum_{t=1}^{t'_2-1} \min\{c_{t_2}, ub_2\} \)
14: if \(p_1 + p_2 \leq A_1 + A_2 + A_3 \) then return yes
15: else if \(t'_2 \leq t'_2 \) and \(c_t \geq lb_1 + lb_2 \) for \(t_1 \leq t \leq \sum_{t=1}^{t'_1} \min\{c_{t_1}, c_{t_2}\} \) then
16: \(A_1 = \sum_{t=1}^{t'_1-1} \min\{c_{t_1}, ub_1\} \)
17: \(A_2 = \sum_{t=1}^{t'_2-1} \min\{c_{t_2}, ub_1, ub_2\} \)
18: \(A_3 = \sum_{t=1}^{t'_2-1} \min\{c_{t_2}, ub_2\} \)
19: if \(p_1 + p_2 \leq A_1 + A_2 + A_3 \) then return yes
20: return no

Appendix D. RLP-scheduling with a single non-preemptible job

Algorithm 8 runs in time \(O(H) \) and solves the problem RLP-scheduling with a single job that must be executed without preemption.

Algorithm 8 RLP-scheduling with a single non-preemptible job.

1: if \(p > H \cdot ub \) then return the instance is infeasible
2: else if \(p > \sum_{t=1}^{H} \min\{c_{t_1}, ub\} \) then return \(p - \sum_{t=1}^{H} \min\{c_{t_1}, ub\} \)
3: else if \(lb \cdot H \leq p \) then return 0
4: else
5: \(z = +\infty \)
6: for \(t = 1 \) to \(H \) do
7: find the largest integer \(H_t \) with \(t \leq H_t \leq H \) such that \(lb \cdot (H_t - t + 1) \leq p \).
8: if \(p \leq \sum_{t=1}^{H_t} \min\{c_{t_1}, ub\} \) then \(z = 0 \)
9: else if \(p \leq (H_t - t + 1) \cdot ub \) then \(z = \min\left\{ z, p - \sum_{t=1}^{H_t} \min\{c_{t_1}, ub\} \right\} \)
10: if \(z = +\infty \) then return the instance is infeasible
11: else return \(z \)

References

